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 Abstract 

The Heisenberg model was used to analyze the properties of the quasi two 

dimensional (2D) spin-½ triangular antiferromagnet Cs2CuBr4. High temperature 

series expansions of the magnetic susceptibility, Padé approximants, D-Log Padé 

approximants, and least squares analysis were used to determine diagonal nearest 

neighbor (J1) and nearest neighbor (J2) exchange constants, the Lande factors (g), the 

saturation field (Hs), and to provide evidence of spin frustration in this system.  The 

theoretical calculations of these quantities are close to those determined by 

experiments, but are not close enough to conclude that Cs2CuBr4 is completely 

described by this model.   

 

 

1. Introduction 

  

 High temperature and organic superconducting materials are one of the most exciting, 

and possibly one of the most important recent discoveries in all of science.  The numerous 

possible applications of these novel materials such as superconducting transmission lines and 

high critical temperature (Tc) magnets, is just one of many reasons why they have captured 

the interest of materials scientists, chemists, and physicists alike.  However, not enough is 

understood about the physical mechanisms that give these the extraordinary properties; thus 

limiting their practical applications. 

 On a macroscopic level, high temperature superconductors are often flaky ceramics 

that are poor metals (conductors) at room temperature.  At the molecular level, many of them 

have planes of Copper or Oxygen atoms.  At stoichiometry the 2D lattices in these planes act 

as antiferromagnetic insulators.  Upon doping, and if its temperature is lowered sufficiently 

to its Tc, it enters a superconducting phase in which there is zero electrical resistance.  Most 

of the superconducting “action” takes place within the planes; therefore, there is great interest 

in understanding the magnetic properties of the 2D antiferromagnetic structures that exist 

within these planes.  

 Over the past 15 -20 years, there has been significant theoretical and experimental 

work done on the properties of spin-½ triangular antiferromagnets (TAF’s).  These are 

magnetic structures that exist in the planes of some organic superconductors.  They are 

antiferromagnets in which atoms having net spin of a half are situated on a triangular lattice.  

Experiments have been used to measure important magnetic properties in spin-½ TAF’s such 

as exchange constants, g factors, and the saturation field.  However, neutron scattering 
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experiments that can be used to accurately determine the exchange constants in a given 

superconducting material, are difficult and expensive to perform because they require 

extremely pure samples which are often very difficult to manufacture, especially in the case 

of organic crystals.  On the other hand, bulk measurements such as the magnetic 

susceptibility () and the specific heat as functions of temperature, are relatively easier to 

perform and can be determined quite accurately.  The job of theoretical physicists is to come 

up with a quantitative prediction for these quantities to interpret the experiments and to 

determine the material’s parameters. 

 In this paper, I first discuss some background information regarding, the nature of 

antiferromagnets, the exchange interaction, and the Heisenberg model.  Next, I discuss past 

experimental and theoretical developments in the study of spin-½ TAF’s including the 

phenomenon of frustration and its effect on magnetic ordering, high temperature series 

expansions of , and Padé and D-Log Padé approximants of .  The remainder of the paper 

focuses on using these high temperature series approximations (obtained from the 

Heisenberg model for an anisotropic spin-½ TAF), experimental measurements of (T), and 

numerical and computational analysis to determine the exchange constants, g factors, and 

saturation field in Cs2CuBr4. 

 

 

2. Antiferromagnetic Ordering and the Exchange Interaction 

 

 When the temperature of an antiferromagnetic crystal is lowered sufficiently it 

undergoes a phase transition from a disordered paramagnetic phase to an ordered 

antiferromagnetic phase.  The temperature at which this occurs is called the Néel temperature 

(TN), which is different for each material.  Above its Néel temperature, molecular moments 

in the crystal are randomly aligned resulting in zero net magnetization.  The magnetic 

susceptibility of the crystal above TN is given by the Curie-Weiss law, 

 

                                                           
'TT

C
χ(T)

N
                                                           (1) 

 
where C, (the Curie constant) and TN’ are material dependent constants.  Note that there is no 

divergence in the susceptibility as it reaches the transition temperature since TN’ > 0.  In the 

case of a ferromagnetic crystal, there is a divergence in the susceptibility as it transitions 

from a paramagnetic to ferromagnetic phase.  At TN the molecular moments become 

spontaneously aligned anti-parallel to their neighboring spins also resulting in a net 

magnetization of zero. Since there is no net magnetization in either phase, how are they 

distinguished from one another?  

 Consider the ionic crystal MnF2 which has chemical notation Mn
2+

F2
-
. It crystallizes 

in the face-center cubic structure as shown in figure 1.  
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     FIG. 1 (Omar, p. 451) (Left).  (fcc) Crystal structure of MnF2.  The arrows on the Mn2+ ions indicate the direction of the 

magnetic moment, illustrating their antifferomagnetic arrangement.  FIG. 2 (Omar, p. 452) on the right illustrates the 

susceptibility curve for MnF2 . Its paramagnetic phase exists up to TN, below which the susceptibility behaves as shown with 

the field applied perpendicular (┴) and parallel (||) to the direction of the moments. 

 

The manganese and fluorine ions have ground state electron configurations [Ar]3d
3
4s

2 
and 

[He]2s
2
2p

6
 respectively; the square brackets denote core electron configurations. The 

fluorine ions are not magnetic since they have a filled outer 2p shell, while the manganese 

ions are magnetic due to their unfilled 3d shell. This crystal is antiferromagnetic since the 

manganese ions at the corners of the unit cell have moments aligned anti-parallel to the 

manganese ions at the center of the unit cell.   

 A paramagnet obeys the Curie law ~ 1/T for all temperatures, while the 

susceptibility of an antiferromagnet below TN behaves as illustrated in figure 2. ┴ 

corresponds to a magnetic field applied perpendicular to the spin alignment and || 
corresponds to a magnetic field applied parallel to the orientation of the moments. The 

paramagnetic phase of MnF2 can thus be distinguished from its antiferromagnetic phase, by 

examining the susceptibility plot in figure 2.  Thus, the characteristic behavior of the 
susceptibility as a function of temperature provides a mechanism for distinguishing between 

unordered and ordered phases in antiferromagnets.  

 Spontaneous anti-alignment of molecular moments in antiferromagnets implies the 

presence of an internal field. This internal field is called the molecular field. In 1928, 

Heisenberg proposed that the molecular field responsible for the magnetic ordering in solids 

is the result of a spin dependent exchange interaction between moments on neighboring 

lattice sites. Furthermore, he proposed that the exchange (potential) energy between atoms of 

net spin Si and Sj on neighboring sites is given by,  

 

                                                              Vij = Jij Si 
.
 Sj                                                          (2) 

 

where Jij is the corresponding exchange constant and (for spin ½ atoms),    

 

                                                                   ii σS
2


                                                              (3) 

 

with i being the Pauli spin matrices.  Consequently, if Jij > 0 the lowest energy 

configuration is when the spins are aligned anti-parallel to one another, corresponding to 
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antiferromagnetic ordering of the moments.  In the case where Jij < 0, the lowest energy 

configuration occurs when spins are aligned parallel to one another, resulting in a 

ferromagnetic ordering of the moments. 

 The physical origin of the exchange energy is governed by the laws of quantum 

mechanics. Electrons interact classically via Coulomb’s law, and quantum mechanically via 

the Pauli Exclusion Principle.  The Pauli Exclusion Principle prohibits electrons with like 

spins from coming close to one another which in effect reduces their coulomb repulsion. On 

the other hand, electrons with opposite spins can get close to one another resulting in a higher 

coulomb repulsion between them. The exchange energy can then be thought of as the 

difference in potential energy of the parallel and anti-parallel spin states.  This spin 

dependent exchange energy is responsible for magnetic ordering in materials. 

 

  

3. The Heisenberg Model  

 

 The Heisenberg model consists of a Hamiltonian for an array of spins with the 

exchange energy given in (2).  That is, the exchange interaction between all moments on the 

lattice contributes a term of the form (2) to the Hamiltonian.  The result is a many-body 

Hamiltonian due to the large number of exchange interactions that must be considered (i.e. 

there is on the order of 10
23

 moments).  The Heisenberg Hamiltonian for the system is,  

 

                                                         
j

ij )(J ji SSH                                                        (4) 

 

where Si and Sj are spin-½ operators, and the sum over j indicates summation over all atoms 

relative to the reference spin i. 

 Exchange interactions fall off rapidly with increasing distance; thus it is sufficient to 

only consider nearest neighbor exchange interactions.  The term nearest neighbors means the 

moments which are physically closest to one another on a crystal lattice.  On the hypothetical 

square lattice in figure 3 the pairs of moments at lattice sites 1 and 2 and at sites 1 and 3 are 

nearest neighbors pairs.   

 

1

2

J
2

3

4

 
 

FIG 3.  Spin-½ atoms situated on a square lattice. Atoms 1 and 3, and 1 and 2 are nearest neighbors 
  

 The reason why the exchange interactions fall of rapidly with distance has to do with 

their underlying physical nature.  Exchange interactions between electrons are spin-
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dependent forces arising from both Coulomb interactions and the Pauli Exclusion Principle, 

which they are subject too. The Coulomb interaction acts at a long range so that even 

electrons far apart are influenced by one another’s electric field.  The magnitude of the 

Coulomb repulsion is on the order of r
-2

, where r is the distance between the electrons.  

However, for the Pauli Exclusion Principle to be a significant effect on a pair of electrons, 

they must be able to come very close to one another.  Electron’s whose wave functions have 

significant overlap, have the best chance of coming close to one another and thus the best 

chance of interacting via the Exclusion Principle.   

 An electron’s wave function decays rapidly away from the electron.  With few 

exceptions outer shell electrons in atoms 1 and 4, (see figure 3), will have a smaller amount 

of overlap of their wave functions compared with amount of overlap of electronic wave 

functions in nearest neighbor atoms 1 and 2.  This leads to the conclusion that exchange 

interaction beyond those of the nearest neighbor type are relatively small, and can thus be 

neglected.   

 

 

4. The Heisenberg Model for 2D Spin-½ TAF’s and Frustration 

 

 A 2D spin-½ TAF is an antiferromagnetic crystal in which atoms, having net spin of a 

half are situated on a triangular lattice.  A hypothetical triangular lattice is shown in figure 4.   

 

                                               

1

J
2

J
1

2 3

   
        

     FIG. 4.   Hypothetical   triangular lattice. J2 and J1 are nearest neighbor and diagonal nearest neighbor exchange constants 

respectively. 

 

 The model relevant to our study here includes exchange interactions of both nearest 

neighbor (NN) and diagonal nearest neighbor (DNN) moments. The dashed lines in figure 4 

between the moments at lattice sites 1 and 2 and between 1 and 3 indicate nearest neighbor 

and diagonal nearest neighbor interactions respectively.  J2 and J1 are the exchange constants 

for these NN and DNN interactions respectively.  The Hamiltonian for this system is,  

 

                                            



ik

2

ij

1 JJ kiji SSSSH                                               (5) 

 

where the summation over <ij> and <ik> indicate sums over DNN’s and NN’s respectively.  

Figure 5 illustrates an isotropic triangular lattice which results if J1 = J2 ≠ 0.  In this case, the 
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Hamiltonian (5) is reduced to a single sum.  In the case where J1 ≠ J2 ≠ 0, the triangular lattice 

is distorted or anisotropic, and the Hamiltonian is given by (5).  

 

   

1 2

J
2

 
 

 FIG. 5.  Isotropic triangular lattice 

  

 In an antiferromagnet, neighboring moments want to align anti-parallel to one 

another. The geometry of a square lattice, allows the moments to attain perfect 

antiferromagnetic ordering as shown in figure 6(a).  On the other hand, the geometry of a 

triangular lattice does not allow for perfect antiferromagnetic ordering of the moments.  

Figure 6(b) illustrates that it is possible for the moments at lattice site 1 and 2 to align anti 

parallel, but the moment at lattice site 3 can not be placed exactly anti parallel to the other 

two; there cannot be perfect antiferromagnetic alignment on a triangular lattice.  Thus, a TAF 

is said to be frustrated, an effect which leads to many interesting ordered phases in a TAF. 

 

                               

?

1

2 3 or

 
      

     FIG. 6. (a) (left) The geometry of a square lattice allows for perfect antiferromagnetic (AF) alignment of the spins so that 

nearest neighbors are aligned anti parallel to one another.  The geometry of the triangular lattice (b) (right) prohibits perfect 

AF ordering since spin 3 cannot be aligned anti parallel to both of its nearest neighbors 1 and 2.  The system is said to be 

frustrated. 
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5. Heisenberg Hamiltonian for an Anisotropic Spin-½ TAF in an Applied Magnetic   

     Field 

 

 Associated with the magnetic field on a molecular moment is the orientational 

potential energy,  

 

                                                         V = - H = -g B H S
z 
  

                                                                   
(6)

 

  

H is the magnitude of the magnetic field (taken to be applied in the z direction), B is the 

Bohr Magneton, S
z
 = +/- ½, and g is the Lande factor given by, 

 

                                                
)1(2

)1()1()1(
1g






jj

llssjj
                                          (7) 

 

where l, s, and j, are the orbital, spin, and total angular momentum quantum numbers 

respectively.  The Lande factor describes the origin of angular momentum in the system.  For 

example, in the case of pure orbital motion s = 0 so that j = l, resulting in g = 1.  In the case 

of pure spin motion l = 0 so that s = j, and g = 2.  

 In the presence of a magnetic field, applied in the z direction, the moments on a 

triangular lattice tend to align in the in the z direction.  The orientation potential energy of 

each moment must be factored into the Hamiltonian so that (5) becomes,   

 

 
 i

B

ik

2

ij

1 HgμJ J
z

ikiji SSSSSH                                 (8)  

 

where the sum over i, is over all molecular moments.  From this equation, we see that when 

J1 > 0 and J2 > 0 (both interactions are antiferromagnetic), there is competition between the 

antiferromagnetic exchange interaction which fights to keep neighboring moments in an anti 

parallel arrangement, and the spin field coupling which fights to align the moments parallel 

to the field and incidentally parallel to one another.   

 

 

6. Field Induced Ordered Phases in a 2D Isotropic Spin-½ TAF 

   

 The Hamiltonian for an isotropic spin-½ TAF in an applied magnetic field (in z 

direction) is given by, 

 

                                                 



i

B

ij

ij Hgμ -J
z

iji SSSH                                         (9) 

 

This Hamiltonian can be used to shed light on how the spins are ordered for different 

magnitude ranges of an applied field.  Consider three spins on a triangular lattice as shown 

below in figure 7.   
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     FIG. 7.  Arrangement of spins on a triangular lattice.  The spins are taken to be unit vectors with their orientations in 

space given by the angles  and (spherical coordinates)varies between 0 and, whilevaires between 0 and 
 

For simplicity, assume the spins are unit vectors.  Spin 1 makes an angle of 1 and 1 to the z 

and x axis’s respectively, while spins 2 and 3 make similar angles to these axis.  The 

components of spin 1 in rectangular coordinates are (sin1cos1, sin1sin1, cos1); the 

positions of spins 2 and 3 are given by similar expressions.  Taking the exchange constants to 

be unity (still antiferromagnetic exchange interactions), we can take the total energy of the 

system to be,  

 

                                

z

3

z

2

z

1313221 SSSS  SS  SSS Hgμ -       E total                      (10) 

 

where S
z
’s are the z component of each spin vector.  Note that the z-component can be 

written as Sx
z
 = cosx.  The scalar products in (10) can be computed directly resulting in an 

expression in terms of the angles  and .  For example, 

 

                                           S1S2 = sin1sin2cos(1 - 2) + cos1cos2                               (11) 

 

with the scalar products S1S3 and S2S3 yielding similar expressions.  After making these 

substitutions into the total energy of the system, it becomes clear that the energy of the 

system is dependent solely on the angles ,  and on the magnitude of the magnetic field H 

(since g (=2) and B are constants).  From this point, a computer program can be used to 

determine the lowest energy configurations of the spins for various values of H.  A possible 

algorithm is given in Appendix A.  This program will output the lowest energy 

configurations (ordered phases) of the spins by determining the angles  and  for each spin, 

which minimize the total energy, for each value of H. 

  The possible ordered phases are those shown in figures 8(a) – 8(d).   
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     FIG. 8(a)-(d).  Possible ordered phases in a TAF, derived from simplified expression for the total energy of the system 

(12). 

 

Figures 8(a) and 8(c) are coplanar structures (spins lie in the same plane), 8(b) is a collinear 

structure (all spins lie along same line), and 8(d) is an umbrella structure, where the spin is 

allowed to rotate freely about the direction of the applied field [1,2].   

 An important quantity when studying magnetic systems is the magnetization (M).  It 

is defined as the magnetic moment per unit volume.  The magnetization is also known as an 

order parameter, since it is a measure of how well the moments are aligned.  A schematic 

magnetization curve for this spin system is shown in figure 9. 

 

 
     FIG. 9.  [1] Schematic magnetization curve for a spin-½ TAF.  The various spin structures are stabilized for different 

ranges of the magnetic field. There is a magnetization plateau at one third the saturation magnetization Ms. 

 

The spin structure in figure 8(a) occurs for H < Hc1, the structure in 8(b) occurs for Hc1 < H < 

Hc2, the structure in 8(c) for Hc2 < H < Hs, and the umbrella structure is not an optimal 

configuration [1].  At Hs, the torque on the moments is so great that that they are forced into a 

ferromagnetic ordering. This behavior of the magnetization in a varying magnetic field was 

observed experimentally for Cs2CuBr4 [1], providing evidence that it contains spin-½ TAF’s 

in its planes. 
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7. High Temperature Series Expansions of  

 

 The magnetic susceptibility is defined as, 

 

         
H

M
χ




                                                             (12) 

 

It is a measure of how fast the magnetization changes with a varying magnetic field.  This 

quantity is important in our study because it is related to the exchange constants of a system 

described by (5).  To see how they are related, we begin with the expression for the zero field 

molar susceptibility for N atoms on a lattice (Ashcroft, p.710),  

 

0Hi

BAmolar
H

gμNχ


 





z

iS                                          (13) 

 

where NA is Avogadro’s number.  The notation  will be used from here on to denote the 

molar susceptibility, unless otherwise stated.  Taking the Si’s to be spin-½ operators; the 

ground state expectation value (denoted by the angular brackets) is defined by, 

 

)Tr(e

)eTr(
β

β

H

H







z

iz

i

S
S                                                   (14) 

 

where “Tr” represents the trace (sum of the diagonal elements) of a matrix, and H is the 

Hamiltonian (8).  Carrying out the differentiation in (13) with respect to H yields, 

 

0HjB

2

BA

Tk

)(gμN
χ



 
z

j

z

i SS                                           (15)    

 

where kB is the Boltzman constant.   

 A closed form solution of (15) with the Hamiltonian defined by (8) has yet to be 

found.  The difficulty in finding a closed form solution is evident from the expression (14); it 

requires exponentiation of a Hamiltonian which is not diagonal.  However, an approximate 

solution can be found for high temperatures, using a Taylor expansion of the exponential 

term.  Letting i = 0 so that S0
z
 is the reference spin (this can be any spin on the lattice), for 

high temperatures (15) is,    

 







j

32

32

B

2

BA

)]
3!

)(β
 - 

2!

)(β
  β - (1[Tr 

)]
3!

)(β
 - 

2!

)(β
  β - (1[Tr 

Tk

)(gμN
χ

HH
H

HH
H

 

 S S
z

j

z

0

                   (16) 

 

where  = 1/kBT.   
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 The next task is to calculate the coefficients in this expansion, which turns out to be a 

difficult task for orders of  greater than one.  Keeping only the first term in this expansion, 

(i.e. 
0
) (16) becomes, 

 


jB

2

BA

(1)Tr 

)] (1[Tr 

Tk

)(gμN
χ

 S S
z

j

z

0
                                         (17)  

 

Since S0
z
 and Sj

z
 are spin-½ operators we have, 

 

                                                     Tr [S0
z 
Sj

z 
(1)] = ¼ 0jTr(1)                                               (18) 

  

where  is the standard Kronecker delta notation.  Thus, the sum in (17) is equal to ¼Tr(1) x 

[Tr(1)]
-1

; since every term in the sum is zero except when j = 0.  Finally, the terms Tr(1) in 

the numerator and denominator cancel out (note: Tr(1) = 2
N
 where N is the number of lattice 

sites) and the susceptibility becomes, 

  

3

1)S(S

Tk

)(gμN
χ

B

2

BA 
                                                   (19) 

 

which is a Curie law (~1/T) describing the susceptibility of the antiferromagnet in its 

disordered paramagnetic phase at high temperatures
{1}

.  If this Curie susceptibility were valid 

for all temperatures (T), then the susceptibility would diverge as T approaches zero. This has 

been shown experimentally to be false (figure 2 shows this for MnF2).  This assumption 

cannot be made from a mathematical stand point since the Taylor expansion itself is only 

valid for high T (small ).  

 To obtain a more accurate expression for the susceptibility of this system, higher 

ordered terms in the expansion need to be included.  If both the 
0 

and
 


1
 terms are included 

in the expansion, then, 

 


jB

2

BA

)β - (1Tr 

)] β - (1[Tr 

Tk

)(gμN
χ

H

H S S
z

j

z

0
                                   (20) 

 

where H is the Hamiltonian (5).  Rearranging (20) we have, 

 

      
jB

2

BA

)βTr( - (1)Tr 

] )βTr[( (Tr 

Tk

)(gμN
χ

H

H
z

j

z

0

z

j

z

0 S S-)S S
                           (21) 

 

The first term in the numerator is given by (18).  Furthermore, the denominator is just Tr(1) 

since Tr(H) = 0. Thus we only need to calculate the second term in the numerator.  Plugging 

(5) in we have, 

 

                                                 
{1}

 The ¼ in (18) is written as S(S+1)/3 where S is the spin quantum number.  Here S = ½.  
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))Tr((J ))Tr((J])Tr[(
m

2

n

1 m0

z

j

z

0n0

z

j

z

0

z

j

z

0 SSSSSSSSSS  H              (22) 

 

with S0Sn = (S0
x
Sn

x
 + S0

y
Sn

y 
+ S0

z
Sn

z
).  Since different components of the spin are 

uncorrelated, (23) reduces to, 

 









 )JqJ(q

4

β
1

4

1
])Tr[( 2211H

z

j

z

0 SS                                      (23)  

 

where q1 and q2 are the number of DNN’s and NN’s respectively.  Spin 0 has a total of six 

neighboring spins, where q1 = 2 and q2 = 4.  

 Plugging (23) into (21) and performing some simplifications, we get the first order 

correction to the magnetic susceptibility, 

 


















)JqJ(q
T3k

1)S(S
T

3

1)S(S

k

)(gμN

χ

2211

B

B

2

BA

                                       (24) 

 

This is the Curie-Weiss law given in (1) where C is the quantity in the numerator, and TN’ is 

the quantity in square brackets in the denominator.   

 When even higher terms are kept in the expansion, it becomes increasingly difficult to 

determine the coefficients.  This difficulty arises for orders of  greater than 1 since the 

Hamiltonian is no longer linear, and terms having the form Tr(S0
z
Sj

z
 H

2
) must be computed.  

 The goal is to determine the relationship between the susceptibility and the exchange 

constants J1 and J2.  The approximation (19) does not reveal this relationship; however 

keeping more terms in the series expansion does.  The first order correction to , equation 

(24), shows that the susceptibility is a function of the exchange constants. 

 In effect, we have created a power series representation for *kBT in powers of , 

 

                  
n

n

21nB )βJ,(Ja
n!

1
Tk*χ(β)                                           (25) 

 

For n = 0 and n = 1 we found, 

 

3

1)S(S
)(gμNa 2

BA0


                                                 (26) 

 
2

2211

2

BA1
3

1)S(S
)JqJ(q)(gμNa 







 
                                    (27) 
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 Determining higher coefficients in (25) requires sophisticated computational 

methods.  In my analysis, I used a computer program from Dr. Zheng Weihong
{2}

 (“program 

1”) that generates the coefficients in the expansion up to order 
9
, for any ratio of the 

exchange constants, J1/J2.   

 When J1 and J2 are both greater than zero (antiferromagnetic interactions) the effect 

of the first order correction is to begin to flatten out the susceptibility curve.  In modeling a 

real spin-½ TAF, the temperature at which the flattening takes place is the Néel temperature.  

At TN, the decrease in entropy is sufficient enough that the exchange interactions become the 

dominant factor in determining spin alignment.  That is, the spins begin to align anti parallel 

to one another indicating the systems transition from a paramagnetic phase to an ordered 

phase.  We will see later that keeping even higher terms in the expansion causes the 

susceptibility curve to “turn down” (concave down) at low temperatures.  

 

 

8. A More Accurate Expression for  at Low Temperatures: Padé and D-Log Padé   

    Approximations  

 

 As we know, the power series expansion for  breaks down at low temperatures.   We 

can use Padé and D-Log Padé approximants to improve the approximation at lower 

temperatures.  In general, these approximation methods produce results that are superior to 

polynomial approximations (Burden, p. 517-518).  In a Padé approximation, a polynomial of 

order s is approximated by a ratio of polynomials P and Q of order N and M respectively, 

such that N + M = s.  Employing this method for the susceptibility,  

 

 
  M

M10

N

N10s

s10
βq...βqq

βp...βpp
βa...βaa

βQ

βP
χ




                      (28) 

 

Note that for  to be defined as   0 (i.e high temperature limit), it must be true that q0 ≠ 0.  

Without loss of generality, q0 is set to one.  To determine the coefficients of P and Q we 

begin by multiplying both sides of (28) by the denominator on the right hand side, 

 
N

N10

M

M10

s

s10 βp...βpp)βq...βqq)(βa...βa(a             (29) 

 

For this equation to be satisfied, the coefficients for like powers of  must be equal.  Thus for 

n ≤ N we have the following N + 1 algebraic equations for the powers of  up to n, 

 




 





n

0i

nini

n

1110

1

00

0

pqa:β

...

paqa:β

pa:β

                                                   (30) 

 

                                                 
{2}

 I would like to thank Dr. Weihong for providing us with this program. 
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Furthermore, since P is a polynomial of order N, all of its coefficients are zero for n > N. 

Thus we have the additional algebraic equations for n > N, 

 




 
n

0i

ini

n 0qa:β                                                         (31) 

 

Note that the qn’s are zero for n > M, so that (31) leads to a system of algebraic equations.  

As an example, assume that we are given the expansion for  up to order 
s
, and that P is a 

polynomial of order 
N
 and Q is a polynomial of order 

M
.  In this case (31) leads to the 

system of equations below (written in matrix form), 
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

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
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


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



























s

M

1

M

1-s1-M

5

5432

321

1-M210

a

...

...

...

a

q

...

...

...

q

a.........a

......a......

...aaaa

......aaa

a...aaa

                                    (32)    

 

where the as’s are the coefficients from the expansion for .  In shorthand notation, (32) can 

be written as Aq = a.  The coefficients of Q, are thus determined by the equation q = A
-1

a; 

that is, inversion of the matrix A and subsequent multiplication by a yields the coefficients 

for Q.  Once we have the q’s, we can plug them into (30) along with the as’s, and directly 

calculate each coefficient of P.  Finally, the coefficients of P and Q are plugged into (28) 

resulting in an |N,M| Padé approximant of ().  

 I was given a second program (“program 2”) from Dr. Singh which computes the 

|N,M| Padé approximant for a given polynomial of any order, and evaluates this rational 

function at discrete steps in the in the functions variable.  Here it was used to calculate the 

various Padé approximants for T*() at discrete values of 


.  To get  as a function of T, 

the data must be inverted. First, the T values are found by taking the reciprocal of  at each 

step.  Once these reciprocals are calculated, (T) is found by dividing T*() by the 

reciprocals at each step.  Doing this for every value in the set, results in a data set with (T) 

at discrete T values.  

 The possible Padé approximants for , a 9
th

 order polynomial, are |1,8|, |8,1|, |2,7|, 

|7,2|, |3,6|, |6,3|, |4,5|, |5,4|.  Figure 11 illustrates some of these approximants for J1/J2 = 0.5
{4}

. 

   

 

                                                 
{3}

 In this program kB is set to unity so that  = 1/T. 
{4}

 The choice of J1/J2 here is arbitrary. 
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     FIG. 11.  Behavior of  as a function of T for some of the Padé and D-Log Padé approximants that exhibit the 

characteristic behavior of (T) for a spin-½ TAF (See figure 13).  The insert is a closer look at the Padé approximants 

illustrating their diverse behavior.  The Padé and D-Log Padé approximants only begin to agree well at ~ 25 - 30.  

 

 There is a problem with Padé approximants.  In general, the behavior of a function 

relies heavily on the nature of its singularities in the complex plane.  The theory of critical 

phenomena predicts that the susceptibility has the general form (G. A. Baker, p.10) 

 
γ

c

T

T
-1  χ 








                                                           (33)   

 

In the Padé approximant for , its singularities come from the zeros of Q(); thus they can 

only reliably up to a certain point.  They are reliable up to the point where they agree well 

with D-Log Padé approximants of .  The complicated singularities in the susceptibility 

function are removed by taking the derivative with respect to T of the natural logarithm of .  

That is  

 

cT-T

γ-
χ(T)ln 

dT

d
D(T)                                                (34)          

 

The function D(T) has a simple pole at Tc and a residue of –;  thus, it is better to use a Padé 

approximant for D(T) because it can handle more general types of singularities than the Padé 

approximants can.   
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 The next problem is how to extract data from this expression in the same form as the 

data output of program 2; that is how to retrieve data sets with T*() at discrete  values.  

Dr. Singh gave me another program (“program 3”) which takes as input the coefficients from 

program 1 then performs the necessary numerical differentiations, Padé approximants, 

numerical quadrature, and outputs similar data sets as in program 2.  The possible D-Log 

Padé approximants for D(T), which due to the differentiation is now only an 8
th

 order 

polynomial, are |1,7|, |7,1|, |2,6|, |6,2|, |3,5|, |5,3|, and |4,4|.  Of these 8 approximants, only the 

|3,5| and |4,4| ones behave the same as the experimental susceptibility (see figure 13); these 

are plotted along with the Padé approximants in figure 11 for J1/J2 = 0.5.   

 The Padé approximants are only reliable up to the point where they agree well with 

the D-Log Padé approximants.  In figure 11, we see that they begin to agree well at ~25-30.  

To produce a sufficient approximation, we need approximants that are reliable down to ~9 

(see figure 13).  The differences in susceptibility curves of the two types of approximations 

leads us to the conclusion that Padé approximants are insufficient in providing a suitable 

approximation; instead we must use D-Log Padé approximants to obtain a reliable 

approximation of the susceptibility at these temperatures. 

 D-Log Padé and Padé approximants for  in the antiferromagnetic square lattice and 

1-dimmensional chain limits, J1 = 0 and J2 = 0
{5}

 respectively, provide further evidence that 

D-Log approximants are more reliable to use in our study.  The susceptibility in both cases 

are accurately reported in [6,7].  In both limits, the susceptibility curve from the D-Log Padé 

approximants reproduced the results of these earlier studies very well; while the Padé 

approximants for  did not agree well at all.  Now that we know the D-Log Padé 

approximants are more reliable to use in general, to what extent is the D-Log Padé 

approximant itself reliable?   For both J1 = 0 and J2 = 0, the approximation of begins to 

digress from the reported  values at ~0.3 temperature units below their respective peak 

values; thus, we take them to be reliable down to T = 0.3.        

 

 

9. Outline of Method Used to Determine the Exchange Constants and Lande Factors  

     in Cs2CuBr4  

 

 Our goal is to approximate the exchange constants in a real 2D spin-½ TAF using the 

Heisenberg model and high temperature series expansions of .  We examine the real spin-½ 

TAF Cs2CuBr4.  We chose this material since we have access to experimental susceptibility 

data and since we can compare our theoretical results to those reported in recent studies for 

the values of its exchange constants [1].  

 The crystal structure of Cs2CuBr4 is shown in figures 12(a) and 12(b) along two 

different axes.  

 

                                                 
{5}

 The coefficients in susceptibility expansion could not be obtained directly from program 1.  Instead, I 

obtained them from Dr. Singh. 
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spin-½

TAF

 
 

     FIG. 12. [1]. (a) (left) Arrangement of ions in Cs2CuBr4. The solid gray lines indicate the unit cell.  (b)(right) 

Arrangement of spin-½ Br- ions (filled circles) in the bc plane.  Their arrangement on the lattice forms a spin-½ TAF.  

 

Its chemical notation is Cs
+
Cu

2+
Br

-
. The Cs

+
, Cu

2+
, and Br

-
 ions have electron configurations 

[Kr]4d
10

5s
2
5p

6
, [Ar]3d

9
, and [Ar] 3d

10
4s

2
4p

6
 respectively.  The Br

- 
and

 
Cs

+ 
ions

 
have 

complete outer shells and therefore have no net spin.  On the other hand, the Cu
2+

 ions have 

an incomplete 3d shell with one unpaired electron, resulting in a net spin of a half.  Figure 

12(b) illustrates the arrangement of Cu
2+

 ions in the bc planes; the bold lines indicate the 

formation of a an anisotropic spin-½ TAF.  Recent neutron inelastic scattering experiments 

determined that nearest neighbor and diagonal nearest neighbor exchange interactions are 

dominant in a similar compound, Cs2CuCl4.  In Cs2CuCl4, interlayer exchange interactions 

are less than 10
-2 x J1 [1].  Thus Cs2CuCl4 can be described as a quasi two dimensional TAF.  

Since Cs2CuBr4 has the same crystal structure as Cs2CuCl4, it is also assumed to be a quasi 

2D TAF [1].     

 The method used here to determine the exchange constants, Lande factors, and 

saturation field of Cs2CuBr4 is based on how close theoretical approximations for  are to 

experimental measurements.  Experimentalists measure the susceptibility of this material by 

placing it in a constant magnetic field and then measuring the magnetization as the 

temperature is varied.  This experiment was carried out for Cs2CuBr4 in a constant magnetic 

field of 1 Tesla applied along three different axes of the crystal; the susceptibility was 

measured along these three different axes [1].  The results are illustrated in figure 13.  We 

obtained the experimental data for  from the authors of [1], and I use them in my analysis. 
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     FIG. 13. [1]  The susceptibility of Cs2CuBr4 as a function of temperature in a magnetic field of 1.0 T, applied parallel to 

each of its axis. 

 

 We next want to find a suitable theoretical approximation of the susceptibility.  The 

|3,5| and |4,4| D-Log Padé approximants of  are the only approximants that exhibit the 

characteristic behavior of the experimental susceptibility curve (see figure 13).  Thus, either 

of them is suitable to use for further analysis.  I chose to use the |4,4| D-Log Padé 

approximant.  Using the |3,5| D-Log Padé approximant instead of the |4,4| one, will not 

change the results much since the S
2
 value

{6}
, between these curves, with J1/J2=0.5 (see 

footnote 4) is on the order of 10
-5

 indicating the curves are for the most part identical. 

 Plotting out the |4,4| D-Log approximant of  against the H||c experimental 

susceptibility data produces a theoretical susceptibility curve which does not agree well with 

the experimental one.  However, if the theoretical curve is translated along the T axis by J 

units, and by B units in the  direction, the theoretical fit can be improved.  Figure 14 

illustrates one such translation. 

 

 

 

                                                 
{6}

 See section 10 for a discussion on least squares (S
2
) analysis. 
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     FIG. 14.  The theoretical curve can be translated along each axis to improve the fit.  This is illustrated here 

where J(= J2) = 6.17, B = 0.3, with J1/J2 = 2.3.  Again, the choice of J1/J2 = 2.3 is arbitrary.  

  

 It turns out that the number of temperature units (J) the theoretical curve is shifted by 

is the nearest neighbor exchange constant J2 (see figure 4).  Furthermore, the number of units 

shifted in the  direction (B) is directly related to the Lande factor by, 

 

BA

2B

μ N

J k B
g                                                           (35) 

 

 Let the inverted (see section 8) D-Log Padé approximant for  be called model.  This 

is not the molar susceptibility since it does not have the correct units.  We need to multiply 

model by some constants to obtain molar, which is the physical quantity of importance. When 

model is shifted by J2 along the temperature axis, Program 1 defines the relationship between 

the shifted  data (call it shift) and the molar susceptibility as,  

 

J2)(Tχ
Jk

μgN
χ shift

2B

2

B

2

A
molar                                             (36) 

 

Furthermore, we have the relation molar = B shift; Plugging (36) in for molar and solving for 

g gives us (35).  In effect, shifting the theoretical curve determines the exchange constant J2 

and g (via (35)) directly.  J1 is found by multiplying J2 by the ratio J1/J2, which is known from 

the outset.   

 The problem at hand is to choose J2 and B sufficiently so that the theoretical 

approximation of  produces the closest fit possible to the experimental data for any given 

value of J1/J2.  The parameters which produce the best fit plot are then taken to be the 

exchange constants and g factors present in Cs2CuBr4. 
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10. Computer Program Used to Determine the Best Fit Theoretical Curve, and the   

       Results it Implies 

 

 The process of determining J1, J2, Hs, and g factors that yield the best fit theoretical  

curve to the experimental  curve is too tedious to do manually.  The most efficient way to 

perform this data analysis is to write a computer program which varies J2 and B little by little 

over a sufficient range of values, to determine which set of parameters produce the best fit 

curve using a |4,4| D-Log Padé approximant of .  This was my major task.  I wrote a C 

language computer program to perform this data analysis
{7}

.  I will only discuss its main 

features.  The entire source code is given in Appendix B. 

 First, the experimental and theoretical data sets are scanned into 4 separate arrays, 

one for each quantity.  As mentioned before, the theoretical values are from the |4,4| D-Log 

Padé approximant for a given J1/J2 value and are in the form  vs. T*().  In the next 

operation, the data is inverted to produce theoretical data sets of the form T vs. (T).  Figure 

14 illustrates a susceptibility curve after it has been inverted.  An algorithm next determines 

the maximum  value, and the temperatures at which they occur, for the experimental and 

theoretical curves.  Call these values max(exp), max(Texp), max(theo), and max(Ttheo)
{8}

.  The 

theoretical curve is then shifted by Bmax in the  direction and by J2max in the T direction, 

where J2max= max(Texp)/max(Ttheo) and Bmax= max(exp)/max(theo).  This translation shifts the 

theoretical curve such that its peak matches the peak of the experimental curve.    

 Once the data is shifted, the remainder of the operations in the program is carried out 

for a range of J2 and B values.  These ranges are defined as [J2L ≤ J2max ≤ J2U] and [BL ≤ Bmax 

≤ BU], where the subscripts L and U represent the lower and upper boundaries respectively.  I 

used a symmetric interval for the range of J2 and B values, where J2L = J2max – 5.0, J2U = J2max 

+ 5.0, BL = Bmax – 1.0, and BU = Bmax + 1.0.  I chose these ranges by examining the best fit 

curves for values both inside and outside these intervals.  I noticed that for values outside of 

these intervals, the fits progressively worsened, while values within these ranges produced 

better fits.  Using a “for” loop, J2 is varied from J2L to J2U, incremented by a given value J2, 

each time through the loop.  Within this loop, a second “for” loop varies B from BL to BU, 

incremented by some B, each time through this loop.  I determined J2 and B by 

examining how big a change in J2 and B needed to be made to produce a significant change 

in the fit.  I found J2 = 0.01 and B = 0.001 to be sufficient step sizes.   

 For each value of J2 and B within the abovementioned ranges, each of the following 

operations are carried out. First, the g factor is calculated using (35).  J1 and J2 are then 

converted from units of Kelvin to units of meV
{9}

.  The saturation field Hs is next computed 

using the relation, 

 

                                                 
{7}

 I would like to thank Dr. Nick Puketza of the UCD Department of Computer Science for very helpful 

discussions regarding my program.  
{8}

 exp = experimental and theo = theoretical 
{9}

 1 meV = 11.604 K   
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where  is a conversion to units of Teslas
{10}

.  The saturation field was determined 

experimentally to be ~30 Teslas for H||a and H||b, and ~28 Teslas for H||c [1].  Using these 

values as a guide, a tolerance is placed on Hs.  Thus allowable J1, J2, and g values are limited 

to those which satisfiy: (30.0 ≤ Hs ≤ 32.0) for H||a and H||b, and (28.0 ≤ Hs ≤ 30.0) for H||c.  

For those J2 and B values which satisfy the constraints on Hs, their corresponding shifted data 

is then inverted to have (T) at discrete temperature values.  

 At low temperatures, the reliability of the D-Log Padé approximants begins to break 

down at ~0.3 temperature units below the peak value (see section 8).  However, if the 

theoretical data is shifted by for example J=6.0, the “range of reliability” of the approximant 

becomes 0.3 x 6.0 = 2.0 temperature units below the peak.  For each ratio of exchange 

constants examined, Jmax is approximately 6.0.  From figure 13, we see that the peak occurs 

at T ~ 9; thus, the shifted theoretical data is taken to be reliable down to T = 7.  In my 

program, each data set is limited to a temperature range between 7 and 30.  The upper limit 

of 30 for the range is somewhat arbitrary, since we know that for high T the approximations 

are accurate.  Figure 14 shows that the upper limit of 30 is sufficient since the theoretical and 

experimental curves both behave in the same linear, Curie-like fashion beginning at about T 

= 15 and continuing up to 30. 

 A problem arises.  The D-Log Padé approximants result in values of  at 10,000 

temperature steps, while the experimental measurements of  were only taken for 239 

temperature values. The temperature limitations described above decreases the number of 

experimental data points to about 80, but there are still thousands of theoretical data points 

which lie in the allowed temperature region.  To construct like data sets, an algorithm first 

truncates the data sets by imposing the temperature limitations.  Next, each theoretical T 

value is compared to each experimental T value; only the matching temperature values and 

their respective  values are then recorded into separate arrays, ultimately weeding out all 

unmatched theoretical data points.  

 Using a temperature step of 0.00001 in the Padé approximant produces a second 

problem.  With such a small temperature step, and experimental temperatures reported to 

only 2, 3, or 4 decimal places, some temperature values in the theoretical data set are 

repeated, giving different values of  for the same T value.  Figure 15 is an excerpt from a 

theoretical data set illustrating this issue.   

 

                                                 
{10}

  = 17.276 Tesla 
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T (T) T (T) T (T)

… … … … … …

22.96 0.011382 12.98 0.013250 7.99 0.013302

22.96 0.011383 12.98 0.013251 7.99 0.013303

22.47 0.011483 12.98 0.013250 7.99 0.013302

21.95 0.011588 12.98 0.013251 7.99 0.013301

21.95 0.011590 12.98 0.013252 7.99 0.013302

21.38 0.011706 12.79 0.013272 7.99 0.013301

21.38 0.011708 12.79 0.013273 7.99 0.013303

20.95 0.011795 12.79 0.013274 7.99 0.013302

20.95 0.011796 12.79 0.013273 7.99 0.013301

… … … … … …  
 
     FIG. 15.  Excerpt of an intermediate output file illustrating the occurrence of multiple T values with different  values.  

The  values are averaged out for like T values, and are then taken to be the susceptibility at that temperature. 

 

This problem results from round off errors created by discrepancies in the precisions of 

theoretical and experimental T values.  To fix this problem, an algorithm scans through the 

theoretical data arrays and finds the T values that match, averages out their respective  

values, and records them into a separate array.   

 The data manipulation thus far has created two data sets; one which gives 

experimental values of  and another giving approximates of , for a set of T values between 

7 and 30.  These sets are created for given J2 and B values each time through the loop.  Now 

that we have these two sets of data, we can determine how close the theoretical data fits the 

experimental data.  The notion of closeness here is measured in the S
2
 sense.  The S

2
 value 

for a given set of experimental and theoretical data, is a function of J2 and B and is defined 

by, 

 

 
i

2

ii2

2 )t(e)J(B,S                                                  (38)   

 

where ei and ti are the experimental and theoretical  values at the i
th

 temperature step.  The 

sum over i extends over the number points in the sets.  The S
2
 value is a measure how big the 

difference is between the curves; the smaller the S
2
 value the better the fit.   

 The program next calculates the S
2
 value for each J2 and B.  The program then keeps 

track of which J2 and B value produces the smallest S
2
 value.  In this algorithm, the quantity 

S
2
/m (m = number of data points) is also calculated; this is the average S

2
 value per point.  

The minimum of this quantity is also found using the same algorithm that tracks the 

minimum S
2
 value.  The S

2
/m value is calculated to into account that there are varying 

number of data points for different values of J2 and B.   

 After termination of the program, three important text files are created. First, 

S2vals.txt, lists the S
2
 and S

2
/m values for each J2 and B value tested.  An excerpt from one 

of these files is shown in figure 16.   
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J2 B S
2

S
2
/m m

5.30 0.26326 4.258547E-05 5.193350E-07 82

5.30 0.26426 3.819798E-05 4.658290E-07 82

5.30 0.26526 3.415988E-05 4.165839E-07 82

5.30 0.26626 3.046077E-05 3.714728E-07 82

5.30 0.26726 2.709536E-05 3.304312E-07 82

5.30 0.26826 2.406405E-05 2.934640E-07 82

5.30 0.26926 2.136929E-05 2.606011E-07 82

5.30 0.27026 1.901030E-05 2.318329E-07 82

… … … … …  
 

FIG. 16.  Sample output of S2vals.txt file, listing the S2 and S2/m values for each J2 and B value tested. 

 

Second, FINALexp.txt and FINALtheo.txt list the data sets for each value of J1 and B.  

Figure 17 illustrates a section of the FINALtheo.txt file.   

 

J1= 12.72 J1= 12.72 J1= 12.72

B= 0.228 B= 0.238 B= 0.248

T CHI(T) T CHI(T) T CHI(T)

29.46 0.007025 29.46 0.00733 29.46 0.00764

28.95 0.007105 28.95 0.00742 28.95 0.00773

28.46 0.007180 28.46 0.00749 28.46 0.00781

27.97 0.007259 27.97 0.00758 27.97 0.0079

27.46 0.007342 27.46 0.00766 27.46 0.00799

26.45 0.007512 26.45 0.00784 26.45 0.00817

25.97 0.007594 25.97 0.00793 25.97 0.00826

25.46 0.007684 25.46 0.00802 25.46 0.00836

24.85 0.007793 24.85 0.00813 24.85 0.00848

… … … … … …  
 

FIG. 17.  Sample output of FINALtheo.txt file.  The theoretical data sets are listed for every step in J1 and B. 

 

Finally, gvalues.txt lists the J1, J2, g, Hs, S
2
, S

2
/m, and m values for the best fit theoretical 

curve, for each value of J1/J2 .  We then take the parameters J1, J2, g, and Hs, which result in 

the smallest S
2
 or S

2
/m values, to be the quantities that exist in Cs2CuBr4.  Once we know the 

overall best fit parameters, their respective data sets are found in FINALexp.txt and 

FINALtheo.txt.  A plotting routine is then used to produce plots of the experimental and best 

fit theoretical (T) curves.  

 

 

11. Discussion and Results 

 

 Previous studies of Cs2CuBr4 used a different approach to determine the exchange 

constants in this material [1].  In this study, Neutron elastic scattering experiments determine 
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the ordering wave vector, Q0 = (0,Q0,0).  Classically, the ordering wave vector is related to 

the exchange constants by, 

 

)(2J

J
π)cos(Q

1

2
0                                                     (39)   

 

In the ordered phase of Cs2CuBr4, Q0 = (0,0.575,0) and J1/J2 = 2.1 [1].  Using these quantities 

along with gHs ≈ 63T and the relation, 

 

π)]cos(2Q-[1Jπ)]cos(Q-[12JHgμ 0102sB                              (40) 

  

they found that J1 = 13.9 K and J2 = 6.5 K, for Cs2CuBr4 [1] 
{11}

 .  

 We are now equipped to compute J1, J2, the g factors, and Hs for Cs2CuBr4 using our 

model.  First, program 1 is used to generate the coefficients in the expansion (25) for the 

ratios J1/J2 =0.0, 0.1, 0.2…5.0.  Second, program 2 is used to generate a |4,4| D-Log Padé 

approximant for the susceptibility using each value of the ratio of the exchange constants, for 

10,000 steps in .  Finally, I ran my program for each ratio of exchange constants, tested 

against the three different sets of experimental data for Cs2CuBr4 (One set for each direction, 

i.e. H||x).  The results are given in Appendix C, which report the parameters yielding the best 

fit theoretical curve for each J1/J2 
{12}

 .  

 We established that Padé approximants are not as reliable as the D-Log Padé 

approximants.  Thus, the values in Appendix C are not taken as the quantities that best 

describe the properties of Cs2CuBr4.  However, the tables in Appendix C gives us a good idea 

as to which values of J1/J2 will produce the best fits; allowing us to narrow down the range of 

possible best fit values of J1/J2, when we use D-Log Padé approximants instead.  The same 

procedure from above is implemented for various values of J1/J2 using D-Log Padé 

approximants; the results are reported in Appendix D
{12}

.  

 As a simple check of the best fit parameters, the best fit J1 and J2 values should 

remain the same despite the direction of the applied magnetic field, and the g factors should 

differ in each direction since it is an anisotropic quantity.  The overall best fit curve for each 

direction is produced when J1/J2 = 2.3.  The best fit curves for: H||a has J1 = 14.4, J2= 6.3, ga 

= 2.094 and Hs = 30.4, H||b has J1 = 14.4, J2 = 6.3, gb = 1.998 and Hs = 31.9, H||c has J1 = 

14.4, J2 = 6.3, gc = 2.248 and Hs = 28.4.  Each of these fits has S
2
/m ~ 10

-10
.  Thus the results 

pass our “simple check” as expected. Figure 18 is a plot of the best fit susceptibility curves 

for each direction of the applied field.  

 

                                                 
{11}

 I have assumed a factor of 2 difference in their definition of the exchange constants. 
{12}

 The overall best fit parameters are highlighted in red.   
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     FIG. 18.  Best fit theoretical  curves with an applied field in the a, b, and c directions of the Cs2CuBr4 crystal (See figure 

12).  (Note the axes do not cross at zero).  The actual deviations of these curves are measured in the S2 sense and are 

reported in Appendix D. 

 

 The authors of [1] report that the saturation field for the a and b directions should 

actually be between 30 and 31 Teslas while the saturation field for the c direction should be 

between 28 and 29.  The values we find satisfy these criteria in the a and c directions but not 

for the b direction.  It turns out that the without allowing the saturation field, for the b 

direction, to be higher than 31 we cannot obtain a good fit; this is illustrated in figure 19 

where we constrained J1 = 13.9 and J2 = 6.5, as reported in [1], constrained Hs to be in the 

range 30 - 31 for the a and b directions, and 28 - 29 for the c direction; the g values for each 

direction are allowed to vary freely.  
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     FIG. 19.  Best fit plot when reported constraints [1] are placed on J1, J2, and the Hs’s.  The H||b |4,4| D-Log approximant 

curve cannot be improved beyond this without allowing the saturation field for the b direction to be larger than 31.  The H||a 

and H||c D-Log approximants have S2 ~ 10-9 while the H||b D-Log plots have S2 ~ 10-7. 

  

 These plots are obviously nowhere near as good of fits as those shown in figure 18; 

they can however be improved, but only if the saturation field in the b direction is allowed to 

be larger than 31.   

 Our theoretical calculations of J1 and J2 differ from the experimental determinations 

of these quantities by 0.5 K and 0.2 K respectively.  The ratio of the exchange constants 

predicted by our theoretical model is also higher by about 0.2.  A possible reason for the 

discrepancies in our theoretical results could be because we treated the magnetic unit cells as 

two dimensional ones; that is, we disregarded (inter-planar) exchange interactions between 

the ions in adjacent planes.  Neutron scattering experiments found that inter-planar exchange 

interactions are on the order of 10
-2 x J1 in Cs2CuBr4 [1]; this implies they are relatively small 

compared to exchange interactions occurring within the planes.  However, this material is 

indeed 3 dimensional and including these interactions might bring our results closer to those 

reported in [1].   It is a difficult task to take these types of interactions into account.  In this 

case, the Hamiltonian in (5) has a third exchange interaction term in it making it even more 

difficult than before (when there were only two terms in the Hamiltonian) to compute the 

coefficients in (25); the complication arises from the exponentiation of a non-diagonal 

Hamiltonian.     
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12. Conclusions 

 

In this paper, I discussed recent advances regarding the properties of spin-½ TAF’s 

including the effect of frustration on magnetic ordering, and applications of high temperature 

series expansions of the magnetic susceptibility.  Furthermore, I wrote a C language program, 

that uses least squares analysis, to determine the exchange constants, Lande factors, and the 

saturation field for the real spin-½ Cs2CuBr4.  This program computes these quantities based 

on analysis of D-Log Padé approximants of high temperature series expansions of the 

magnetic susceptibility, for the Heisenberg model of an anisotropic spin-½ TAF. 

Our theoretical analysis using the Heisenberg model for an anisotropic spin-½ TAF 

finds that J1=14.4 and J2=6.3 in Cs2CuBr4. Our results are in relatively good agreement with 

experimental results; in obtaining these values however, we allowed the saturation field to be 

larger, for the b direction, than what is reported for Cs2CuBr4 in [1].  Restricting all the 

parameters to those reported in [1] did not produce good fits.  Treating the system as a three 

dimensional spin-½ antiferromagnet instead of a spin-½ triangular antiferromagnet could 

possibly resolve the discrepancies in our results; this is a valid avenue for further research in 

this field. 
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