

SECRETS OF THE UNIVERSE

AN INTERACTIVE ART INSTALLATION AND PERFORMANCE
CONTROLLED WITH RASPBERRY PI

NICHOLAS SQUIRES

ARBITRARYY.COM

2015

 !
www.ArbitraryY.com!

1

SECRETS OF THE UNIVERSE! 2!

SYSTEM OPERATION AND REQUIREMENTS! 2!

SYSTEM OPERATING MODES! 3!
EXHIBITION!MODE:!OBSERVER!INTERACTION!WITH!THE!PAINTINGS! 3!
PERFORMANCE!MODE:!LIVE!MUSICAL!INTERACTION!WITH!THE!PAINTINGS! 4!
FUNCTIONAL REQUIREMENTS! 5!

SOTU SYSTEM OVERVIEW! 5!

HARDWARE! 6!

RASPBERRY PI! 7!
LED DRIVER BOARD! 7!
ARDUINO AND PROTOSHIELD! 8!
RANGE SENSOR AND LCD SCREEN! 8!

SOFTWARE! 9!

ARDUINO! 11!
DISTANCE MEASUREMENTS! 11!
PROGRAMMATIC LED CONTROL! 12!
OPEN SOUND CONTROL (OSC)! 15!
RASPBERRY PI CONTROL USING OSC! 16!
AN ASIDE ON LINUX SERVICES! 18!
THE SOTU OSC MESSAGE ADDRESS SPACE! 19!
HEALTH MONITORING AND THE SOTU CONTROL CENTER (CC)! 20!
HEALTH MONITORING! 20!
SOTU CONTROL CENTER (CC)! 21!
SOFTWARE UPDATES! 23!
RASPBERRY PI! 23!
ARDUINO! 23!
SYSTEM TESTING! 23!
WEB-BASED CONTROLS! 25!

SYSTEM PROTOTYPE! 27!

SOTU PRODUCTION AND PERFORMANCE INTEGRATION! 28!

PRODUCTION! 28!
PERFORMANCE INTEGRATION! 30!

SHOWTIME! 33!

CONCLUSION! 35!

 !
www.ArbitraryY.com!

2

Secrets of the Universe

Secrets of the Universe (SOTU) was an art installation and musical performance that
explored various topics in physics and cosmology. The opening exhibition and
performance was the culmination of Simonne Jones’ 6-month artist’s residency at
Platoon Kunsthalle in Berlin, Germany, August 2013.

Secrets of the Universe was a series of six technology infused mixed media paintings
that created a unique, interactive visual arts and musical experience. I was
commissioned by Simonne to provide a system that allowed her and observers to
interact with her paintings. I created a system that was motion-activated, LED lit, and
wirelessly controlled hardware and software system built on the Raspberry Pi platform.

This article describes how the Raspberry Pi was used to control the SOTU lighting system
as an example of what an exceptional, low-cost computer it provides for interactive
arts and musical applications.

Figure 1 – “Secrets of the Universe”. Platoon Kunsthalle, Berlin, DE 8/2013

System Operation and Requirements
Conceptually, the system was simple with just two modes of operation: Exhibition and
Performance. In Exhibition Mode, LED lights attached to the paintings were to activate
when observers came within a predefined proximity of each painting. In Performance
Mode, Simonne would use the system as an interactive, real-time lighting tool during her
musical performance where she could activate the lights on the paintings using her
musical instruments.

 !
www.ArbitraryY.com!

3

Simonne and I first defined the system and operating mode requirements as described
in the following sections. The details of the lighting and color schemes, trigger devices,
etc. were subsequently defined during the integration phase.

System Operating Modes

Exhibition!Mode:!Observer!Interaction!with!the!Paintings!
During the exhibition phase of the show people were allowed to traverse the stage and
interact with the artwork. When they entered the Activation Zone (AZ), a configurable
area in front of painting, its lights would illuminate and run through a configurable
lighting scheme until they exited this zone. If an observer stepped within a configurable
Warning Zone (WZ) of a painting, the lights would erratically flash red until they exited
this area.

!

Figure'2')'Exhibition'mode'operational'diagram'

In exhibition mode SOTU functioned in accordance with the following requirements:

 !
www.ArbitraryY.com!

4

1> The painting’s LED lights shall activate a predefined lighting scheme when an
observer is within a given range in front of a painting and turn off completely
when no observer is present in this area

2> The system shall be capable of creating and playing back custom lighting
schemes

3> The LED lights on each painting shall enter “warning mode”, by erratically
flashing red, when a user is within one foot of a painting

People stood in front of the paintings, stepped in and out of the activation zone, waved
their hands in front of the sensor to activate the warning mode, or just stood in front of
the painting for minutes on end and marveled at the painting accentuated by its
mesmerizing lighting display.

Performance!Mode:!Live!Musical!Interaction!with!the!Paintings!
In the performance phase of the show, the paintings were to operate seamlessly as part
of Simonne’s live musical performance where she would use them as a performance
tool, to illuminate the paintings by dancing in front of them and activate them to the
rhythm of her music using her array of musical instruments

!

Figure'3')'SOTU'performance'mode'operational'diagram'

During this phase of the show, SOTU was set into performance mode and the system
operated in accordance with the following requirements:

 !
www.ArbitraryY.com!

5

1> The LED lights on each painting shall be capable of being independently
activated via key pushes on a MIDI keyboard and when the bass drum is kicked

2> The LED lights on each painting shall be capable of being independently
activated when within 2 feet of any given painting

Functional Requirements
With the system’s operational concept complete, I next developed the following
system-level requirements.

1> The system shall operate in Exhibition and Performance modes as specified in the
exhibition and performance mode requirements

2> The system shall have a centralized Monitoring and Control System (“Control
Center” CC) that provides a Graphical User Interface (GUI) for central control
and monitoring of each system

3> Each painting shall house an independently powered and controlled RGB LED
lighting system accessible over a WiFi network via Secure Shell (SSH), a web
application, or the monitoring and control system

4> Each painting shall contain a sensor with sufficient accuracy to determine an
observer’s distance from a painting when they are within 10 feet of it

5> The system shall use Open Sound Control (OSC) as its primary communications
protocol

6> The system shall be capable of accepting and converting MIDI messages to OSC
messages

7> Each painting shall be independently controllable using external MIDI/OSC
subsystems

8> Each painting shall house an LCD screen capable of displaying the painting’s full
name

9> Each painting shall report its health and operational status to a centralized
monitoring and control system at a configurable time interval during all
operating modes

10> The software shall be able to be updated remotely over the SOTU wireless
network

11> The system shall provide the capability to programmatically create custom
lighting schemes

12> The system shall provide an end-user web interface (accessible via a wireless
local area network) that provides the user basic lighting controls

SOTU System Overview
The Raspberry Pi has captured the attention of computer enthusiasts since its release.
Along with microcontrollers like Arduino, it has lowered the entry barriers for those with
the desire to venture into the world of physical computing. The Raspberry Pi’s

 !
www.ArbitraryY.com!

6

computing power and Linux operating system coupled with Arduino’s real time
processing capabilities create a small, low cost, mighty computing duo that was ideal
for this application. A diagram of the SOTU system is shown below.

Figure 4 - SOTU system overview

Hardware
Each SOTU system was composed of the following components:

⁞ 1 x Raspberry Pi Model B
⁞ 1 x Adafruit Pi Plate
⁞ 1 x Arduino Uno R3
⁞ 1 x Edimax USB 802.11n/g/b WiFi Dongle
⁞ 1 x 4GB SDHC Card Class 4
⁞ 1 x 10K potentiometer

USB

 RANGE SENSOR MEASUREMENTS
 LCD SCREEN

ARDUINO UNO

 WEB SERVER
 NETWORK CONNECTIVITY (WIFI)
 REMOTE ACCESS (SSH, VNC)
 ARDUINO IDE
 DEV TOOLS (GIT, PYTHON)

ADAFRUIT PI PLATE
LED DRIVER BOARD

(POWER AND LED CONTROL)

AN
A

LO
G

RASPBERRY PI B

G
P

IO

RGB
LED1

RGB
LED2

RANGE SENSOR
(DISTANCE

MEASUREMENTS)

D
IG

IT
AL

D
IG

IT
AL

16x2 LCD SCREEN
(DISPLAY PAINTING NAME)

5V 2A
(RASPBERRY PI)

12V 2A
(ARDUINO, RANGE

SENSOR, LCD SCREEN
AND LEDs)

12
V,

 G
R

O
U

N
D

WIFI DONGLE

MY LAPTOP

 SOTU CONTROL CENTER
 REMOTE ADMINISTRATION
 S/W DEVELOPMENT (GIT, ECLIPSE)
 SOTU ADMINISTRATION
 TESTING

TEST TOOLS

iPHONE APPS:
 TOUCHOSC
 iOSC
 OSC TEST TOOL

USB USB

MIDI
INTERFACE

BASS DRUM

ATTACHED

PIEZO SENSOR

SIMONNE’S LAPTOP

ABLETON LIVE
MIDI/OSC PROCESSING AND ROUTING

MIDI KEYBOARD

SOTU SOFTWARE
 OSC SERVER
 RANGE SENSOR DATA PROCESSING
 SYSTEM HEALTH STATUS REPORTING
 LED CONTROL (SYSTEM, WEB)
 SOFTWARE PWM

BITBUCKET
CODE REPOSITORY,
SOTU SW UPDATES

CODE UPDATES

SO
TU

 SW

UPD
A

TES

SD
 C

A
RD

10K W
POTENTIOMETER

ARDUINO PROTOPLATE
(5V, 12V POWER DISTRIBUTION,

COMMON GROUND)

 !
www.ArbitraryY.com!

7

⁞ 1 x Sparkfun Arduino Protoplate
⁞ 1 x Maxbotix LV-EZ1 Range Sensor
⁞ 1 x Sparkfun 16x2 LCD Display
⁞ 2 x Analog RGB LED Strips (30 LED/per strip)
⁞ 1 x 12V 2A Power supply (Arduino, LCD, Range Sensor, and LED power)
⁞ 1 x 5V 2A Power Supply (Raspberry Pi, WiFi dongle power)

An assembled unit is shown below.

Figure 5 - Assembled SOTU computing unit

Raspberry Pi
The Raspberry Pi supported the majority of the system functions.

1> Open Soud Control (OSC) Server – Primary communications software. Processed
all incoming OSC messages.

2> Webserver – Apache httpd. Served web based LED control web pages.
3> Remote Access – SSH and VNC. SSH for remote software development on the

Raspberry Pi and VNC for development in the Arduino IDE.
4> WiFi – Wireless access to the SOTU WiFi network
5> LED Strip Control – Software Pulse Width Modulation (PWM) for LED control

LED Driver Board
The LED driver board was a circuit of transistors and resistors arranged onto an Adafruit
Pi-Plate. This attached to the Raspberry Pi I/O panel and was the connection point for
the LED strips. There were separate circuits for each LED strip that were both connected
to the common system ground.

 !
www.ArbitraryY.com!

8

Figure 6 - LED driver board

Arduino and Protoshield
The Arduino and its attached protoshield implemented the following functions:

1> Range sensing and distance measurements – Measured the distance of an
observer from the front of the painting.

2> 12V and 5V power distribution – Powered the Arduino, Raspberry Pi, LEDs, LCD
screen, and range sensor

3> LCD Screen – Displayed the painting name

Figure 7 Arduino and Protoshield

Range Sensor and LCD Screen
Holes were cut in the canvas of each painting where the range sensor (center of
painting) and LCD screen (bottom right) were then placed. The range sensor was used

 !
www.ArbitraryY.com!

9

to determine an observer’s distance from the painting. The LCD screen displayed the
name of the painting.

Figure 8 – Left: SOTU computing hardware mounted to the frame. Wiring was secured in mesh cable
management material and fastened to the frame using wire nails. Right: LCD screen displays the painting

name “Entropy: Chaos and Disorder”

!

Figure 9 - 16x2 LCD screen displays the painting name, “Big Bang: Birth of the Universe”. Range sensor is
hidden in the black paint at center of the canvas.

Software
SOTU is a software intensive, Raspberry Pi centric system. The Raspberry Pi ran the
Raspbian Wheezy operating system. I wrote the majority of the code in Python and
used Eclipse + PyDev as my primary development environment. Arduino software

 !
www.ArbitraryY.com!

10

development was done using the Arduino IDE. All of the SOTU code was maintained in
Bitbucket repositories.

The SOTU software system was made up of an Arduino program, range sensor data
processing, programmatic LED lighting controls and effects libraries, a communications
layer, user interfaces, system health monitoring, maintenance scripts, OSS/COTS tools,
test tools, and web controls. A diagram of the software architecture is shown below
and will be discussed in detail in the following sections.

Figure 10 – SOTU software architecture

 !
www.ArbitraryY.com!

11

Arduino
The range sensor and LCD screen were physically connected to analog/digital pins on
the Arduino. I ran a modified version of the Firmata.ino software; Firmata.ino is an
Arduino implementation of the Firmata protocol that allows you to send/receive
analog/digital set points to/from and Arduino over serial USB. My customizations to it
were minimal; I added in the Arduino LCD libraries and custom code to display the
painting names on the screens and branded it “sotumata”.

Distance Measurements
The Raspberry Pi was connected to the Arduino with a USB cable that permitted
bidirectional serial data flow between them. On the Raspberry Pi, I used pyFirmata (a
python interface for the Firmata protocol) to access raw range sensor readings from the
Arduino. The readings from the Arduino were voltage measurements that were
converted to distance measurements on the Pi using the scaling factor specified in the
Maxbotix data sheet.

During testing I observed that the range sensor had an error ratio of 1:7. I used a simple
averaging function to convert these readings into a reliable source of distance
measurements. The code below is from the rsDistance module I wrote to get these
reliable range sensor readings. When arduinoMeasure() was invoked, n raw range sensor
readings were taken and stored in a list, converted to distances, and then averaged
using the median function from Python’s numpy library. These range sensor

measurements were then used as needed to determine an observer’s
presence/distance from the front of the painting.

<rangeSensor.py>

1. import;pyfirmata;;;
2. import;time;;;
3. import;numpy;as;np;;;
4. ;;;
5. #setup;serial;connection;to;Arduino;;;
6. board;=;pyfirmata.Arduino('/dev/ttyACM0');;;
7. ;;;
8. #;start;an;iterator;thread;so;that;serial;buffer;doesn't;overflow;;;
9. it;=;pyfirmata.util.Iterator(board);;;
10. it.start();;;
11. ;;;
12. #set;the;number;of;raw;range;sensor;readings;;;
13. numMeasures;=;10;;;
14. ;;;
15. #;Set;up;the;RPi;to;read;the;analog;values;from;pin;0;on;the;Arduino;;;
16. pin0=board.get_pin('a:0:i');;;;
17. ;;;
18. def;arduinoMeasure():;;;
19. ;;;;;;;;while;pin0.read();is;None:;;;
20. ;;;;;;;;;;;;print;"passing";;;

 !
www.ArbitraryY.com!

12

21. ;;;;;;;;;;;;pass;;;
22. ;;;;;;;;#Calculate;the;distance.;Uses;raw;voltage;and;scaling;factor;per;maxbotix;spec;;
23. ;;;;;;;;return;distance;=;pin0.read()*512;;;
24. ;;;
25. def;measureAvg():;;;
26. ;;;;;;;;#Number;of;measurements;to;take;;;
27. ;;;;;;;;dataPoints;=;[];;;
28. ;;;;;;;;#take;numMeasures;measurements;and;put;into;array;for;avg;calculations;;;
29. ;;;;;;;;for;num;in;range(0,numMeasures):;;;
30. ;;;;;;;;;;;;#measure;the;range;numMeasures;times;and;put;them;into;an;array;
31. ;;;;;;;;;;;;#Data;sheet;allows;distance;measurements;at;50ms;intervals;
32. ;;;;;;;;;;;;distance=arduinoMeasure();;;
33. ;;;;;;;;;;;;time.sleep(0.01);
34. ;;;;;;;;;;;;dataPoints.append(distance);;;
35. ;;;;;;;;return;avg;=;np.median(dataPoints);;;

Programmatic LED Control
Each painting had two RGB LED strips mounted to the inside frame of its canvas. The
strips were connected to the GPIO pins on the Raspberry Pi via the LED driver board.

Pulse-width Modulation (PWM) is required to illuminate these analog RGB LEDs. PWM
regulates the amount of power supplied to DC electrical devices such as analog LEDs.
In spite of all of its great capabilities, the Raspberry Pi lacks sufficient native PWM
capable outputs for this application with only one GPIO pin that is hardware PWM
capable. Applications like this that require more than one PWM capable output can
use software PWM as an alternative.

There are numerous software libraries available in the open source community for
software PWM. RPi.GPIO;v0.5.2a (a Python package, very outdated version now) and
piablaster are two open source packages that enable software PWM on the GPIO pins.
The Kernel in Raspbian wheezy is not intended for real-time applications; jitter is likely
when using software PWM. During tests the jitter was much more prominent with
RPi.GPIO versus pi-blaster, so I used pi-blaster. Note that when the pi-blaster service is
running, ALL GPIO pins on the Pi are locked in as PWM outputs and cannot be
configured differently.

With Pi-blaster the power supplied to a given GPIO pin is controlled by writing a decimal
value of 0.0 – 1.0 to the device file /dev/piablaster. Writing a value of 0.0 for a given pin
represents 0% brightness (off) while a value of 1.0 represents 100% brightness (full
brightness). As an example, to set pin 2 to 20% PWM (turn connected LED on to 20%
brightness) run the following command:

1. echo;"2=0.2";>;/dev/piablaster;;;

I wrote the following piablaster;wrapper makes it easier to programmatically set the pin
values

 !
www.ArbitraryY.com!

13

<PBlstr.py>

1. from;os;import;system;;;
2. ;;;
3. class;Pblstr:;;;
4. 2222def;__init__(self):;;;
5. ;;;;#PiaBlaster;device;file;;;
6. ;;;;self.devFile;=;'/dev/piablaster';;;
7. ;;;;
8. ;;;;def;write(self,gpioPin,val):;;;
9. ;;;;""";;
10. ;;;;This;function;writes;to;the;piablaster;device;file;;
11. ;;;;INPUT:;;;
12. ;;;;;;a;gpioPin;=;GPIO;pin;to;write;to;;
13. ;;;;;;a;val;;;;;=;Set;the;pin;to;this;value;;
14. ;;;;""";;;
15. ;;;;system("echo;\"{0}={1}\";>;{2}";.format(gpioPin,val,self.devFile));;;

A Python script or another class could control the PWM of any GPIO pin:

1. from;PBlstr;import;PBlstr;as;pb;;;
2. ;;;
3. {do2stuff};
4. ;;;
5. pb.write(1,0.3);;

This would set GPIO pin 1 on the Raspberry Pi to 30% PWM which would cause the LED
attached to that pin would turn on to 30% brightness.

PBlstr was the building block for all other LED functions. For example, CommonLED
implemented essential LED methods for converting the analog RGB values to
acceptable pi-blaster values, setting individual GPIO pin values, turning all lights off/on,
and setting the color for an entire LED strip. An example is the setColor method from
CommonLED shown below.

;

<commonLED.py>

1. from;decimal;import;Decimal,getcontext;;;
2. from;PBlstr;import;PBlstr;as;pb;;;;;;;
3. ;;;
4. #Set;the;decimal;precision;to;two;decimal;places;;;;;
5. getcontext().prec;=;2;;;
6. ;;;
7. def;setColor(self,RGB):;;;;;
8. ;;;;""";;;
9. ;;;;Set;RGB;color;passed;to;it;;;
10. ;;;;RGB;a;array;of;R,;G,;B;values;to;set;;;
11. ;;;;""";;;;;
12. ;;;;;;;;i;=;0;;;;;;;

 !
www.ArbitraryY.com!

14

13. ;;;;;;;;#gpioPinsList;is;a;configurable;list;of;GPIO;pin;;;;;;;;;
14. ;;;;;;;;#numbers;where;the;RGB;terminals;on;the;LED;strip;are;connected;;;;;
15. ;;;;;;;;for;gpioVal;in;gpioPinsList:;;;
16. ;;;;;;;;;gpioVal;=;rgbToPb(gpioVal);;;
17. ;; ; self.pb.write(gpioVal,;RGB[i]);;;;;;;
18. ;; ; i;+=;1;;;
19. ;;;
20. def;rgbToPb(self,rgbVal):;;;
21. ;;;;#Scale;from;raw;RGB;values;to;piablaster;allowed;values;;;
22. ;;;;return;Decimal(rgbVal)/Decimal(255);;;;;

I was then able to set the RGB value for either strip on the painting as shown below.

1. from;CommonLED;import;CommonLED;as;cLED;;;
2. ;;;
3. ;;;;{do2stuff};
4. ;;;
5. cLED.setColor(1,[255,0,0]);

The setColor() function is now a fundamental capability of the system. Continuing to
build upon these classes, I wrote the effects class that implemented the following
lighting effects:

⁞ solid() – Set an LED strip to an RGB value
⁞ fade() – Fade from one color to another
⁞ rotate() – Rotate through a predefined array of colors
⁞ pulse() – Switch back and forth between two given colors at a specified rate for

a specified number of iterations
⁞ flashFade() – Set an LED strip to an RGB value then fade it to off

With these all of the LED classes completed I used them to create lighting playback
scripts that contained instructions on how the lights would behave. As an example, the
following playback script was run on the Big Bang: Birth of the Universe painting, which
was meant to simulate the Big Bang event. This scheme would be activated when an
observer entered the Activation Zone.

;

<bigBang.py>

1. #!/usr/bin/python;;;
2. ;;;
3. from;time;import;sleep;;;
4. from;Effects;import;Effects;as;ef;;;
5. from;rsDistance;import;rsDistance;;;
6. ;;;
7. allOff;;;;;=;[0,0,0];;;

 !
www.ArbitraryY.com!

15

8. #Dim;white;;;
9. startColor;=;[10,10,10];;;
10. #Full;brightness;;;
11. endColor;;;=;[255,255,255];;;
12. #RGB;colors;to;rotate;between.;;Colors;taken;from;falseacolor;;;;
13. #representations;of;nebulae;pictures;
14. universeColors;=;[[28,30,68],[40,93,144],[123,32,144],[67,47,103]];;;
15. #Activate;scheme;while;observer;is;between;10;and;30;inches;in;front;of;the;painting;;;
16. actionZone;=;[10,30];
17. ;;;
18. while;True:;;;
19. ;;;;#Take;a;distance;measurement.;If;observer;is;in;action;zone;run;the;following;to;completion;
20. ;;;;distance;=;rsDistance.measureAvg();;;
21. ;;;;if;actionZone[0];<=;distance;<=;actionZone[a1]:;;;
22. ;;;;;;;;"""fade;in;from;dark;to;dim;white;(dim;white;represents;universe;singularity);;
23. ;;;;;;;;""";;;
24. ;;;;;;;;ef.fade(allOff,startColor,1,0);;;
25. ;;;
26. ;;;;;;;;"""pulse;at;dim;white;for;5;seconds;;
27. ;;;;;;;;""";;;
28. ;;;;;;;;ef.pulse(startColor,0.2,5,5,1);;;
29. ;;;
30. ;;;;;;;;"""pause;before;explosion;;
31. ;;;;;;;;""";;;
32. ;;;;;;;;sleep(2);;;
33. ;;;
34. ;;;;;;;;"""simulate;Big;Bang;explosion;by;rapid;jump;to;100%;full;white;brightness;;
35. ;;;;;;;;""";;;
36. ;;;;;;;;ef.fade(startColor,endColor,49,0.01);;;
37. ;;;
38. ;;;;;;;;"""pause;after;expansion;;
39. ;;;;;;;;""";;;
40. ;;;;;;;;sleep(5);;;
41. ;;;
42. ;;;;;;;;#Fade;to;the;universeColors[];and;rotate;through;them;after;expansion;to;;;;
43. ;;;;;;;;#represent;the;formation;of;galaxies,;nebulae,;etc;
44. ;;;;;;;;ef.fade(endColor,universeColors[0],1,0.05);;;
45. ;;;;;;;;ef.rotate(universeColors,1,1,0.001);;;
46. ;;;
47. ;;;;;;;;#Fade;out;from;the;last;color;in;the;universe;array;;;
48. ;;;;;;;;ef.fade(universeColors[a1],allOff,1,0);;;
49. ;;;;;;
50. ;;;;;;;;#check;if;observer;still;in;AZ;and;if;so,;rearun;scheme,;otherwise;turn;allOff;;
51. ;;;;;;;;distance;=;rsDistance.measureAvg();;;

A video demonstration of the Big Bang playback script running on my SOTU prototype
here: http://youtu.be/7-34Rvw3Aqs!

Open Sound Control (OSC)
OSC is a communications protocol that enables musical instruments, Digital Audio
Workstations (DAWs), computers and other multimedia tools to communicate with one
another on a network. A useful implementation of the OSC protocol is a simple client
server mechanism; an OSC “client” sends OSC messages, and an OSC “server” receives
and processes them. With this simple communication mechanism, default integration

 !
www.ArbitraryY.com!

16

with modern DAWs and a great Open Source python implementation called pyOSC it
was the best choice to use as the primary communication protocol.

Raspberry Pi Control Using OSC
Using pyOSC I developed oscServer, a Python program that ran on each Raspberry Pi that
listened for, received and processed incoming OSC messages. Using pyOSC’s callback
mechanism the incoming messages executed functions in oscServer;providing me the
capability to execute LED lighting functions or even Raspbian system commands by
simply sending the associated OSC message.

The code below illustrates my OSC server implementation. In this example, I
instantiated an OSC server, added a message handler for the OSC message /osc/led,
(which served as the base OSC address for LED functions) and defined a callback
function led() to invoke functions in the CommonLED and Effects libraries to perform
desired LED actions.

;

<oscServer.py>

1. #Import;the;pyOSC;OSC;server;libraries;;;;;
2. from;OSC;import;OSCServer;;;;;
3. from;CommonLED;import;CommonLED;as;cLED;;;
4. from;Effects;import;Effects;as;ef;;;
5. ;;;
6. #Define;OSC;server;port;and;traceback;IP;;;;;
7. OSCPort;=;4567;;;;;
8. OSCIP;;;=;"0.0.0.0";;;;;
9. #Instantiate;server;;;;;
10. oscSrv;=;OSCServer((OSCIP,OSCPort));;;;;
11. ;;;;;;;;;
12. def;led(path,;tags,;args,;source):;;;;;
13. ;;;;""";;
14. ;;;;Process;message;sent;from;an;OSC;client.;When;server;receives;/osc/led;;;;;
15. ;;;;Address,;use;the;CommonLED;and;Effects;classes;to;do;;;;;
16. ;;;;make;the;lights;do;stuff.;args;is;an;array;of;the;;;;;
17. ;;;;arguments;passed;in;the;OSC;message;so;;;;;
18. ;;;;""";;;
19. ;;;;oscProg;;=;args[0];;;
20. ;;;;#Turn;LED;strip;1;and;2;on;to;RGB;255,255,255;;;
21. ;;;;#using;the;CommonLED;function;;;
22. ;;;;if;oscProg;==;'allOn':;;;
23. ;;;;;;;;cLED.setColor(1,[255,255,255]);;;
24. ;;;;;;;;cLED.setColor(2,[255,255,255]);;;
25. ;;;;;;;
26. ;;;;if;oscProg;in;gpioPins.keys():;;;
27. ;;;;;;;;#Check;if;oscProg;is;a;GPIO;pin;(as;defined;in;gpioPins);;;
28. ;;;;;;;;#if;it;is;we;only;want;to;perform;an;operation;on;a;single;;;
29. ;;;;;;;;#pin.;;The;pinValue;is;then;taken;and;some;action;is;applied;;;
30. ;;;;;;;;#;to;it.;;;
31. ;;;;;;;;pinValue;=;args[1];;;
32. ;;;;;;;;action;;;=;args[2];;;
33. ;;;;;;;;#search;gpioPins;dict;for;pin;value.;Exit;when;found;;;
34. ;;;;;;;;for;dictColor,gpioPin;in;gpioPins.iteritems():;;;

 !
www.ArbitraryY.com!

17

35. ;;;;;;;;;;;;if;oscProg;==;dictColor:;;;
36. ;;;;;;;;;;;;;;;;break;;;
37. ;;;;;;;;#This;calls;the;flash;method;in;the;Effects;module;;;
38. ;;;;;;;;#which;sets;gpioPin;to;high;then;sets;to;low;after;;;;
39. ;;;;;;;;#"slp";seconds;;;
40. ;;;;;;;;if;action;=="flash":;;;
41. ;;;;;;;;;;;;ef.flash(gpioPin,slp);;;
42. ;;;;;;;;elif;action;==;'solid':;;;
43. ;;;;;;;;;;;;cLED.setPinValue(gpioPin,pinValue);;;
44. ;;;
45. #Message;Handlers;and;Callback;functions;;;;;
46. oscSrv.addMsgHandler("/osc/led",led);;;;;
47. ;;;
48. while;True:;;;;;
49. ;;;;#listen;for;OSC;messages;until;Python;script;is;terminated;;;;;
50. ;;;;oscSrv.handle_request();;;

Sending the following OSC message to this server:

/osc/led;allOn;

would cause both strips in the painting to turn on to 100% white brightness.

As another example, to turn LED strip 1 on to 100% red brightness and strip 2 to 30% blue
brightness send the following messages:

/osc/led;r1;1;solid;

/osc/led;b2;0.3;solid;

The flexibility in pyOSC’s callback mechanism also made it possible to control Linux system
commands such as starting/stopping services or a graceful shutdown. The example
below shows how I implemented remote shutdown of the Pi with OSC. Note that for
(some) security authzKey must be sent as the second argument of the message.

<oscServer.py>;

1. from;subprocess;import;call;;;;;
2. ;;;;;
3. ;;;;def;rpi;(path,;tags,;args,;source):;;;
4. ;;;;;;;;#get;the;acommand;to;run;and;the;authorization;key;from;;;
5. ;;;;;;;;#the;arguments;passed;in;the;OSC;message;;;
6. ;;;;;;;;cmd;=;args[0];;;;;
7. ;;;;;;;;key;=;args[1];;;
8. ;;;;;;;;#check;that;the;off;command;is;sent;along;with;the;proper;;;
9. ;;;;;;;;#authorization;key.;;The;authzKey;is;defined;in;a;variable;;;;
10. ;;;;;;;;#not;shown;here;;;
11. ;;;;;;;;if;cmd;==;'off';and;key;==;authzKey:;;;;;
12. ;;;;;;;;;;;;print;"RPi;received;shutdown;command.;Shutting;down;now.;;;
13. ;;;;;;;;;;;;#issuing;Linux;shutdown;command;;;
14. ;;;;;;;;;;;;call(["sudo",;"shutdown",;"ah",;"now"]);;;;;
15. ;;;;;;;;else:;;;;;
16. ;;;;;;;;;;;;print;"Bad;function/Authorization;Key;provided";;;

 !
www.ArbitraryY.com!

18

17. ;;;;;
18. oscSrv.addMsgHandler("/osc/rpi",rpi);;;;

To shut down the Raspberry Pi gracefully (assuming I sent the proper authzKey) I sent:

/osc/rpi;off;<authzKey>;

which would shut it down with:

 sudo;shutdown;–h;now;

An Aside on Linux Services
Those that are familiar with Debian based Linux distributions are also probably familiar
with the service command. service allows you to run System V (SysV) init scripts that are
stored in /etc/init.d. SysV scripts allow you to start/stop system services, check their
status, process ID and enable them to run at various run-levels.

The SysV system provides the framework to extend custom scripts into Linux system
services. A quick tutorial on creating an init script for a custom service is here:

http://www.stuffaboutcode.com/2012/06/raspberry-pi-run-program-at-start-up.html

And more detailed information about SysV init scripts can be found here:

http://www.debian.org/doc/manuals/debian-reference/ch03.en.html#_sysv_style_init

I wrote SysV scripts for each essential SOTU function including rangeSensor, oscServer and
heartbeat. With these I could start, stop, or status rangeSensor and heartbeat with:

service;<serviceName>;(start|stop|status);

I next extended oscServer to accept OSC messages to control these services. The
callback function below processes OSC messages of the form

/osc/service;<serviceName>;(start|stop|status);

<oscServer.py>;

1. def;srvc(path,;tags,;args,;source):;;;
2. ;;;;""";;
3. ;;;;Callback;function;to;handle;all;RPi;related;functions;;
4. ;;;;;;;;OSC;Msg:;/osc/srvc;<srvcName>;start|stop;;
5. ;;;;""";;;
6. ;;;;#list;of;allowed;services;and;values.;Basic;security;;;;
7. ;;;;#to;prevent;disallowed;services;from;being;controlled;
8. ;;;;allowedSrvcs;=;["piablaster","ssh",;"httpd”,;"rangeSensor","heartbeat"];;;
9. ;;;;allowedCmds;;=;["start","stop"];;;
10. ;;;;srvcName;=;args[0];;;
11. ;;;;value;;;;=;args[1];;;
12. ;;;;#check;if;this;is;an;allowed;command;;;

 !
www.ArbitraryY.com!

19

13. ;;;;if;srvcName;in;allowedSrvcs;and;value;in;allowedCmds:;;;
14. ;;;;;;;;call(["sudo",;"service",;srvcName,;value]);;;
15. ;;;;else:;;;
16. ;;;;;;;;print;"{0}:;\"{1};{2};{3}\";Not;allowed";.format(localtime,path,srvcName,value);

I was then able to control any allowed system service (configured by allowedSrvcs;in
line 8) (i.e. piablstr, ssh, httpd, rangeSensor, heartbeat) using OSC messages.

The SOTU OSC Message Address Space
The OSC server connected external systems to the most important SOTU and Linux
system functions. Abstracting these capabilities as OSC messages was essential for
system command and control. The table below defines the SOTU OSC message
address space.

System
Function

Address (Data Type) Argument Description/Example

LED
Control

 Control LED function

 /osc/led22 (string) allOff Turn all lights off
 (string) allOn Turn all lights on to 100%

brightness
 (string) CS (float32) B (string) E

⁞ (C)olor= r, g, b
⁞ (S)trip = 1, 2

⁞ (B)rightness = 0.0;–;1.0
⁞ (E)ffect = solid, flashFade,

flash, rotate, pulse

Turn color C (red, green, blue)
on strip S (LED Strip 1 or 2) to %
brightness B with effect E

Ex: /osc/led2r120.42flash

Turns red LEDs on strip 1 to 40%
brightness with flash effect

Raspbian
Service
Control

 Control allowed services in
oscServer

 /osc/srvc; (string) S (string) A
⁞ (S)ervice = piablaster,

rangeSensor, httpd, ssh,
heartbeat

⁞ (A)ction = start, stop

Start or stop an allowed service
S

Ex: /osc/srvc2heartbeat2stop

Stops the heartbeat service;
health status no longer be
published to the control center

Raspbian
Functions

 Control other Raspbian
functions (non services)

 /osc/rpi2 (string) A (string) K
⁞ (A)rgument = off
⁞ Authorization (K)ey =

authzKey

Gracefully turn off the Raspberry
Pi when valid authorization key
(K) is provided.

System
Health
Monitoring

 Reports system health
information from each Pi

 !
www.ArbitraryY.com!

20

 /osc/heartbeat2 (string) H (string) S (string) P
⁞ (H)ostname
⁞ (S)ervice
⁞ Linux (P)rocess ID

While the heartbeat service is
running, each painting sends its
hostname, and a list of tracked
services (defined in heartbeat)
along with their associated
Process IDs (PID) to the control
center

Figure 11 - SOTU OSC address space

Health Monitoring and the SOTU Control Center (CC)
During early system testing it was challenging to manage and monitor the six separate
systems. It was critical to be able to monitor all these systems in real-time during shows, I
developed a common UI that allowed me to control and monitor all of the paintings
through a single interface.

Health Monitoring
The following system health data was sent from each painting to the control center
using the program heartbeat every 5 seconds (configurable setting):

⁞ Linux process IDs (PID)
⁞ oscServer (osc)
⁞ ssh (ssh)
⁞ httpd (web)
⁞ health service (hst)
⁞ pi-blaster (pib)

⁞ SOTU operational mode (mod): performance or exhibition
⁞ Range sensor reading (rng) in inches

In heartbeat, I used the pyOSC client method to send the data to the OSC server that was
running on the control center (see next section for CC description). The code
generates heartbeat messages. An OSC client is instantiated, the OSC message is
constructed with the data points listed above and sent to the control center:

<heartbeat.py>;

1. import;subprocess;;;
2. from;time;import;sleep;;;
3. from;OSC;import;OSCClient,;OSCMessage;;;
4. ;;;
5. #List;of;Linux;services;;;
6. srvcs;;;;;;;=;["piablaster","oscServer",“httpd”,”ssh”,”heartbeat”];;;
7. pgrepOutput;=;[];;;
8. queryTime;;;=;5;#Number;of;seconds;between;heartbeat;check;;;
9. #The;IP;and;port;of;the;CC;OSC;server;;;
10. OSCPort;=;12000;;;
11. OSCIP;;;=;"X.X.X.X";;;
12. ;;;
13. #Define;the;heartbeat;OSC;address;;;

 !
www.ArbitraryY.com!

21

14. statusAddr;=;"/osc/heartbeat";;;;
15. ;;;
16. #instantiate;an;OSC;Client;;;
17. srvcClient;=;OSCClient();;;
18. srvcClient.connect(;(OSCIP,;OSCPort););;;
19. ;;;
20. try:;;;
21. ;;;;while;True:;;;
22. ;;;;;;;;#Get;the;RPis;hostname;;;
23. ;;;;;;;;h;=;subprocess.Popen(["hostname"],;stdout=subprocess.PIPE);;;
24. ;;;;;;;;hOut,;hErr;=;h.communicate();;;
25. ;;;;;;;;#For;each;service;in;array;srvcs,;construct;the;OSC;message,;log;the;output;;;
26. ;;;;;;;;#Then;send;it;to;the;OSC;server;that;is;running;on;the;control;center;
27. ;;;;;;;;for;srvc;in;srvcs:;;;
28. ;;;;;;;;;;;;#Get;the;PIDs;of;each;service;in;srvcs;;;;
29. ;;;;;;;;;;;;p;=;subprocess.Popen(["pgrep",;srvc],;stdout=subprocess.PIPE);;;
30. ;;;;;;;;;;;;pOut,;pErr;=;p.communicate();;;
31. ;;;;;;;;;;;;pOut.rstrip('\n');;;
32. ;;;;;;;;;;;;#construct;the;OSC;message;with;the;OSC;address,;;;
33. ;;;;;;;;;;;;#Linux;process;ID,;and;the;service;name;;;
34. ;;;;;;;;;;;;oscMsg;=;OSCMessage(statusAddr);;;
35. ;;;;;;;;;;;;oscMsg.append(hOut.rstrip('\n'));;;
36. ;;;;;;;;;;;;oscMsg.append(srvc);;;
37. ;;;;;;;;;;;;#Log;the;output;to;std;Out;;;
38. ;;;;;;;;;;;;if;pOut:;;;
39. ;;;;;;;;;;;;;;;;oscMsg.append(1);#there;was;a;service;running;;;
40. ;;;;;;;;;;;;;;;;print;"{0}:;{1};";.format(srvc,"Running");;;
41. ;;;;;;;;;;;;else:;;;
42. ;;;;;;;;;;;;;;;;oscMsg.append(0);;;
43. ;;;;;;;;;;;;;;;;print;"{0}:;Stopped";.format(srvc);;;
44. ;;;;;;;;;;;;#Send;the;OSC;Message;;;
45. ;;;;;;;;;;;;srvcClient.send(oscMsg);;;
46. ;;;;;;;;sleep(queryTime);;;
47. ;;;
48. except;KeyboardInterrupt:;;;
49. ;;;;;;;;pass;;;

SOTU Control Center (CC)
The Control Center is a user interface that I developed in Processing (a popular visual
programming language) to aggregate the painting’s health data and to provide some
basic system controls. Processing is a popular programming language that is used for
visual programming. The CC was developed using:

⁞ ControlP5;– Graphical UI development library, sliders, buttons, etc
⁞ oscP5;– OSC server/client library

A screenshot of the interface is shown below.

 !
www.ArbitraryY.com!

22

Figure 12 – CC GUI interface was built with Processing. Note this is “dummy” data for illustration purpose.

On the backend of the CC UI was an OSC server implemented with oscP5. This server
processed the heartbeat messages from each Pi and organized them into the UI shown
above. If a service went down on a painting I would be alerted, allowing me to take
action to bring the system back to normal operation.

I built in a simple self-healing capability. If a service died, it would try to restart
automatically. I would be alerted (at a configurable time interval) if the service
restarted successfully or if it failed and I needed to take further action. If the service
didn’t come back online after retrying for 10 seconds I restarted the service manually
using a PuTTY terminal.

I was also able to control some basic lighting and system functions with the CC. Button
clicks and slider changes triggered oscP5 client events that would send associated OSC
messages to a painting.

⁞ Color Pickers – Set the color of each painting using an RGB value. LED strip color
is displayed in the preview bar below each set of sliders.

⁞ /osc/led;x1;<value>;solid;
⁞ AllOn – Set the LEDs on a painting to all white

⁞ /osc/led;allOn;
⁞ AllOff – Turn LEDs off

⁞ /osc/led;allOff;
⁞ Shutdown – Gracefully shut down the Pi

⁞ /osc/rpi;shutdown;<authzKey>;

 !
www.ArbitraryY.com!

23

I didn’t get around to programming in Linux service controls into the CC that would’ve
been useful; it is a straightforward extension from what was discussed in this section.

Software Updates
I used a separate Git repository on Bitbucket for the production version of SOTU
software. This repository held compiled Python programs, system init scripts, SOTU web
application, Arduino software, and SOTU S/W release and S/W update scripts. Updating
software on both controllers was simple and another example of the Arduino/Raspberry
Pi synergy.

Raspberry Pi
At the end of a development cycle I used releaseSOTU, a script I wrote to generate a
software build from my local clone of the development Git repository. This script
compiled and copied all of the necessary Python modules (oscServer.pyc, Effects.pyc,
etc) and scripts to the runtime directory /usr/local/sotu.

I then ran the script updateSOTU.sh -push to send this new release to the production Git
repository; it was now available to all paintings.

I updated the other paintings using updateSOTU.sh -pull that simply ran a series of Git
commands:

1> push
a. Stage changes: git;add;*,;git;add;au;*
b. Commit: git;commit;am;"Updating;SOTU;repository;on;${DATE}"
c. Push to Master: git;push

2> pull
a. Pull latest: git;pull

Arduino
The Arduino was connected to the Pi via USB and was configured in the Arduino IDE
(installed on each Pi) as a serial device. The Arduino software was updated as follows,

1> Pull the latest release of the SOTU software using updateSOTU.sh;apull
2> Connect to the Pi with VNC to display back the Linux desktop environment
3> Open the latest version of the sotumata.ino sketch with the Arduino IDE
4> Upload the sketch to the Arduino using the IDEs upload tool

System Testing
I developed an assortment of test tools to test the systems’ most critical functions. A
rudimentary PERL script using the OSC library Net::OpenSoundControl::Client was initially
sufficient to send messages to the server. I used the following script to test the
addresses defined in the OSC address space.

 !
www.ArbitraryY.com!

24

<oscTest.pl>;

1. #!C:\perl\bin\perl.exe;;;
2. #;;;
3. use;lib;'C:\perl\lib';;;;
4. use;Net::OpenSoundControl::Client;;;;;
5. ;;;
6. if;(@ARGV;!=;2);{;;;
7. ;;;;print;"\n\tusage:;perl;sendOSC.pl;<server;IP>;<port#>\n\n";;;;
8. ;;;;exit;;;;
9. };else;{;;;
10. ;;;;;;;#Specify;the;server;IP;address;and;OSC;listening;port;;;
11. ;;;;$server_ip;=;$ARGV[0];;;;
12. ;;;;$port;=;$ARGV[1];;;;
13. };;;
14. ;;;
15. #Create;an;OSC;client;object;;;;
16. my;$client;=;Net::OpenSoundControl::Clienta>new(;;;
17. ;;;;;;;;Host;=>;$server_ip,;Port;=>;$port);;;
18. ;;;;;;;;or;die;"could;not;start;client:;$@\n";;;;
19. ;;;
20. #Construct;the;OSC;address;and;send;the;OSC;message;with;required;;;;
21. #parameters;for;that;address;;;
22. my;$osc_addr;=;"/osc/led";;;;
23. $clienta>send(["$osc_addr";,;'s',;"g2",;'i',;0,;'s',;"solid"]);;;;

This script became challenging to use with the growing complexity of the OSC address
space and parallel OSC server testing. I needed a tool that was easier to swap
between OSC server IP addresses, one that provided a simple means to program in
multiple OSC commands and one that was mobile friendly. After trying various iOS
applications including iOSC, OSC Test Tool, and Control, I decided to try TouchOSC.

TouchOSC is an OSC server/client iOS application that functions on a WiFi network.
TouchOSC Editor is a free tool used to build custom UIs for TouchOSC. It boasts controls
such as buttons, sliders and dials that can each be individually programmed to send
OSC messages. I developed the interface shown below

 !
www.ArbitraryY.com!

25

Figure 13 - TouchOSC SOTU system testing UI. LED section of buttons controlled on/off associated colors for
strip 1 and 2, turn all LEDs on/off to full white. Raspberry Pi section of buttons could turn the range sensor

on/off, turn SSH or Pi-Blaster Linux services on/off, or turn the Pi itself off

!

TouchOSC was not the perfect testing tool for SOTU. First, it didn’t have the capability
to send messages to multiple servers concurrently. However, it was much easier to
switch between OSC servers than it was using the PERL script. Second, it wasn’t
capable of sending multiple arguments in an OSC message. Again, with the growing
complexity of the system, I eventually grew out of TouchOSC, and ended up using a
mix of test tools and scripts.

Web-based Controls
Each painting was required to be independently controllable over a wireless network.
Up to this point I was only able to control them using the CC or test tools. Neither of
these control methods was practical for an end user of the paintings (i.e. future painting
owner).

The most practical way to implement this functionality was to develop a web
application hosted by an Apache httpd server running on the Raspberry Pi. Using PHP,
jQuery and a PHP implementation of OSC called OSC.php I built the simple painting
control web application shown below.

 !
www.ArbitraryY.com!

26

Figure 14 - Left: Web-based LED controller on an iPhone web browser. Right: lights change color based on
web application

!

MOBILE DEVICE

RASPBERRY PI B

MY LAPTOP

A
JA

X

WEB BROWSER
ledControls.php

WEB BROWSER
ledControls.php

APACHE HTTPD
- sendOSC.php

OSC SERVER
LED CONTROLS

Figure 15 – Web LED application architecture. LEDs on each painting could be adjusted by accessing the
ledControl.php web page individually served on each Raspberry Pi

The sliders in the UI, ledControls.php, implemented jQuery’s AJAX methods to send red,
green, and blue slider values to sendOSC.php. sendOSC.php then sent the OSC messages
to the OSC server as illustrated above.

In the code snippet below, values for the red LEDs on a given strip are acquired from
the web painting control interface via a POST, an OSC client was implemented using the

 !
www.ArbitraryY.com!

27

OSC.php library, and finally an OSC message was constructed using these values and
sent to the OSC server for processing.

<sendOSC.php>;

1. <?php;;;
2. require_once("lib/OSC.php");;;;
3. ;;;
4. #values;from;POST;;;
5. echo;"aaaa";;;;
6. echo;$_POST['rVal'];;;;
7. $rVal;=;$_POST['rVal'];;;;
8. ;;;
9. #Create;OSC;client;object;and;parameters;;;
10. $c;=;new;OSCClient();;;;
11. $ca>set_destination("127.0.0.1",;port);;;;
12. $oscAddress;=;"/osc/led";;;;
13. ;;;
14. #Create;OSC;message;object;;;
15. $r;=;new;OSCMessage($oscAddress,;array($rStrip,;$rVal,;"solid"));;;;
16. ;;;
17. #Send;the;message;;;
18. $ca>send($r);;;;
19. ;;;
20. ?>;;;

These web-based controls eliminated the need to have access to the CC or the test
tools for LED control. The LEDs on the paintings were then controllable using a web
browser on any computer or mobile device connected to the same network as the
painting.

System Prototype
I was developing the SOTU system thousands of miles away from the exhibition space.
In order to minimize integration issues and amount of work required upon my arrival at
the Platoon exhibition hall, I built a fully functioning replica of a painting. I constructed
a 1m x 1m frame and mounted all of the SOTU components to it in a similar
configuration to the production system.

This prototype allowed me to measure exact lengths of wires, determine required sizes
of nuts and bolts, precut and predrill mounting holes, solder electrical components,
determine optimal placement of the LED strips, LCD screen, and range sensors, and
also test and optimize the range sensor’s algorithms in its operational position.

 !
www.ArbitraryY.com!

28

Figure 16 - SOTU system prototype

This preparation minimized the amount of risk involved with integrating the SOTU system
for the first time at Platoon and resulted in more system integration time to perfect
interoperability with her live performance.

SOTU Production and Performance Integration

Production
It took about two months of procurement, assembly and testing in my home lab to
have all six units ready. I had to purchase and receive all of the parts, solder all of
electrical components, install operating systems and SOTU software, complete
functional testing of each assembled unit, and finally label and safely package
everything into boxes.

 !
www.ArbitraryY.com!

29

Figure 17 - Top: Assembling and testing LCD screens and LED driver boards. Bottom: Assembling SOTU units
and readying for functional test

A month prior to the show I packed everything into a carry-on luggage and was on my
way to Berlin.

Once in Berlin, I set up shop alongside Simonne’s painting operation in the Artist Lab at
Platoon where we assembled the paintings.

 !
www.ArbitraryY.com!

30

Figure 18 - Simonne and I working in the Platoon Artist Lab

In between Simonne’s press events, we managed to test each painting, integrate SOTU
with her musical instruments, and make other configuration tweaks to accommodate
the environment in the exhibition space.

Performance Integration
Simonne uses the Ableton Live Digital Audio Workstation (DAW) with an assortment of
MIDI controllers to trigger samples, effects and instruments during her live performance.

Ableton Live integrated seamlessly into SOTU since it can expose its internal MIDI and
OSC communication making the MIDI note for key presses on her keyboard readily
available. This made it easy to siphon off those messages and process them with
external devices and software tools.

Getting MIDI messages from her keyboard in Ableton was simple since it was a directly
connected to her computer. To send a MIDI message to Ableton when the bass drum
was kicked, we connected a pressure sensor to it and connected the other end to a
MIDI interface, which was then connected to her laptop. We added the MIDI interface
to her Ableton session and were then able receive MIDI on/off messages each time the
bass drum was kicked. Now both her MIDI keyboard and drum set were configured to
send messages to Ableton.

Next I needed to translate these MIDI messages to representative OSC messages that
could then be routed to the OSC servers on each Pi. Instead of developing my own

 !
www.ArbitraryY.com!

31

MIDI/OSC routing tool, I chose to use OSCulator. OSCulator isn’t open source, but is
available at a very reasonable price for all of its capabilities. It boasts an intuitive user
interface, great documentation, has the ability to send OSC messages to multiple OSC
servers (e.g. send commands to each painting) and integrates natively with Ableton
Live. The MIDI channels can be configured to output directly to OSCulator.

Once Ableton Live was configured to send the MIDI output from Simonne’s instruments
to OSCulator it was trivial to configure OSCulator to then route the messages to any of
the paintings for LED control of the paintings.

Below is a sample of the OSCulator configuration window:

Figure 19 - OSCulator. The MIDI input from Ableton along with the routed OSC messages to paintings 4 and
5 (i.e. PLTN4 and PLTN5)

In this example, OSCulator is listening on port 9001 for any MIDI/OSC messages. If the
key corresponding to MIDI note 43 is pressed on her keyboard, a value of 1 is sent.
When the key is released a value of 0 was sent. In the example below, OSCulator is
configured to send OSC messages

/osc/led;b1;1;solid;;

and,

/osc/led;b2;1;solid;;

to paintings 4 and 5 (hostnames PLTN4 and PLTN5 respectively); this would then turn
both paintings blue. When the key was released on the keyboard, OSCulator would
receive a value of 0 with MIDI note 43 and then send this OSC message to turn them off
completely.

 !
www.ArbitraryY.com!

32

/osc/led;allOff;

The system was set into the following configuration during the performance:

⁞ Light a painting up blue when she passed within 2 feet of any of the four central
paintings

⁞ Light a painting up pink, purple, or red when a designated key is pressed on her
MIDI keyboard

⁞ Activate blue lights on the paintings at the ends of the stage when the bass
drum was kicked

A diagram of the system operating in performance mode is shown below.

Figure 20 - OSC/MIDI message flow in performance mode. Blue lines represent MIDI, red, OSC, purple,
Firmata, green, GPIO output for LED activation and Analog output for range sensor readings

For comparison a diagram for the data flow during exhibition mode is shown below.

PLTNMATA.INO

ARDUINO UNO

RASPBERRY PI B

RANGE SENSOR

MY LAPTOP

OSC

OSC SERVER
LED CONTROLS
SYSTEM HEALTH STATUS REPORTING
RANGE SENSOR DATA PROCESSING

SOTUMATA.INO

SOTU CC

FIRMATA

MIDI
INTERFACE

BASS DRUM

ATTACHED

PIEZO SENSOR

SIMONNE’S LAPTOP

MIDI KEYBOARD

ABLETON LIVE

OSCULATOR

LCD SCREEN
RGB
LED1

RGB
LED2

 !
www.ArbitraryY.com!

33

Figure 21 – Data flow during exhibition mode. Purple lines - Firmata messages over serial USB, green - GPIO
output for LED activation and Analog output for range sensor readings, red - OSC.

Showtime
The paintings were displayed in a semi-circle on a stage made of milk crates that
resembled a Q-bert playing field, which served as the layout for the exhibition and the
stage for Simonne’s live musical performance.

Figure 22 - Painting configuration on stage

PLTNMATA.INO

ARDUINO UNO

RASPBERRY PI B

RANGE SENSOR

MY LAPTOP

OSC

OSC SERVER
LED CONTROLS
SYSTEM HEALTH STATUS REPORTING
RANGE SENSOR DATA PROCESSING

SOTUMATA.INO

SOTU CC

FIRMATA

LCD SCREEN

RGB
LED1

RGB
LED2

 !
www.ArbitraryY.com!

34

Figure 23 - Simonne Jones plays her paintings during the performance at Platoon Kunsthalle

!

Within the following month Secrets of the Universe was also exhibited at the Berlin
Remake Festival, at the Berlin Arts and Music Festival, and used during her performance
in Bremen, Germany. !

Figure 24 - Observers watch as the paintings act out their lighting programs at the 2013 Berlin Remake
Festival

 !
www.ArbitraryY.com!

35

Figure 25 - Simonne Jones performs with her paintings in Bremen Germany. In this arrangement all of the
paintings are triggered by her drummer's kick drum.

Listen to Simonne describe her philosophy and artistic vision for Secrets of the Universe in
her interview for 3SAT TV (Germany) here: http://vimeo.com/76454151

Conclusion
SOTU performed incredibly well throughout all of the exhibitions and performances, and
we did not experience a single system crash. While the Raspberry Pi is typically touted
as a great hobby computer, I can attest to the fact that it is also excellent for
interactive art and performance applications. I attribute a large part of our success
with this project the robustness of the Raspberry Pi.

Building a system with this level of complexity is a problem filled with interface, logistic,
development, operational, testing and deployment challenges. I endured all of these
challenges while building SOTU with the result of me honing existing skills and acquiring
many new ones. Well played Raspberry Pi Foundation, mission accomplished.

SOTU is the type of problem that unites creators from various disciplines and one that
excites us as all engineers. It was an incredible project to be a part of and infinity to
the power of infinity thanks go out to Simonne Jones for allowing me to help bring her
vision to life.

